IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v257y2017i2p586-600.html
   My bibliography  Save this article

The within groups and the between groups Myerson values

Author

Listed:
  • González–Arangüena, E.
  • Manuel, C.
  • Owen, G.
  • del Pozo, M.

Abstract

In this paper we revisit the additive decomposition that Gómez et al. (2003) introduced for the Myerson value of a symmetric game when viewed as a centrality measure. First, we generalize this decomposition, extending it to general games. This approach permits us to look at the Myerson value of a player as a certain modulus of a two component vector. One of them, the within groups Myerson value, determines which part corresponds to the profit from the coalitions that a given player is in, whereas the other, the between groups Myerson value, evaluates the opportunities that player has as intermediary in the communication among others. These two values are then characterized using additivity and other properties related with previous interpretation: (A) The competitive advantages (or disadvantages) of a null player in a game with restrictions given by a graph (measured in terms of his Myerson value) are due to his ability to intermediate among the others. (B) In the same context, those players essential to coalitions that generate worth cannot obtain profit by intermediating. When restricted to certain symmetric games, the corresponding values can be considered as centrality measures, as they satisfy natural properties that reinforce this interpretation.

Suggested Citation

  • González–Arangüena, E. & Manuel, C. & Owen, G. & del Pozo, M., 2017. "The within groups and the between groups Myerson values," European Journal of Operational Research, Elsevier, vol. 257(2), pages 586-600.
  • Handle: RePEc:eee:ejores:v:257:y:2017:i:2:p:586-600
    DOI: 10.1016/j.ejor.2016.08.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722171630618X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.08.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Winter, Eyal, 1992. "The consistency and potential for values of games with coalition structure," Games and Economic Behavior, Elsevier, vol. 4(1), pages 132-144, January.
    2. André Casajus, 2009. "Networks and outside options," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 32(1), pages 1-13, January.
    3. van den Nouweland, Anne & Borm, Peter & Tijs, Stef, 1992. "Allocation Rules for Hypergraph Communication Situations," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(3), pages 255-268.
    4. van den Nouweland, Anne & Borm, Peter & Tijs, Stef, 1992. "Allocation Rules for Hypergraph Communication Situations," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(3), pages 255-268.
    5. González–Arangüena, Enrique & Manuel, Conrado Miguel & del Pozo, Mónica, 2015. "Values of games with weighted graphs," European Journal of Operational Research, Elsevier, vol. 243(1), pages 248-257.
    6. Jackson, Matthew O. & Wolinsky, Asher, 1996. "A Strategic Model of Social and Economic Networks," Journal of Economic Theory, Elsevier, vol. 71(1), pages 44-74, October.
    7. Hart, Sergiu & Mas-Colell, Andreu, 1989. "Potential, Value, and Consistency," Econometrica, Econometric Society, vol. 57(3), pages 589-614, May.
    8. Roger B. Myerson, 1977. "Graphs and Cooperation in Games," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 225-229, August.
    9. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2010. "Rooted-tree solutions for tree games," European Journal of Operational Research, Elsevier, vol. 203(2), pages 404-408, June.
    10. Gomez, Daniel & Gonzalez-Aranguena, Enrique & Manuel, Conrado & Owen, Guillermo & del Pozo, Monica & Tejada, Juan, 2003. "Centrality and power in social networks: a game theoretic approach," Mathematical Social Sciences, Elsevier, vol. 46(1), pages 27-54, August.
    11. E. Algaba & J. M. Bilbao & P. Borm & J. J. López, 2001. "The Myerson value for union stable structures," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 54(3), pages 359-371, December.
    12. Herings, P. Jean Jacques & van der Laan, Gerard & Talman, Dolf, 2008. "The average tree solution for cycle-free graph games," Games and Economic Behavior, Elsevier, vol. 62(1), pages 77-92, January.
    13. Calvo, Emilio & Lasaga, Javier & van den Nouweland, Anne, 1999. "Values of games with probabilistic graphs," Mathematical Social Sciences, Elsevier, vol. 37(1), pages 79-95, January.
    14. Gómez, D. & González-Arangüena, E. & Manuel, C. & Owen, G., 2008. "A value for generalized probabilistic communication situations," European Journal of Operational Research, Elsevier, vol. 190(2), pages 539-556, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sylvain Béal & Florian Navarro, 2020. "Necessary versus equal players in axiomatic studies," Working Papers 2020-01, CRESE.
    2. Trudeau, Christian & Vidal-Puga, Juan, 2020. "Clique games: A family of games with coincidence between the nucleolus and the Shapley value," Mathematical Social Sciences, Elsevier, vol. 103(C), pages 8-14.
    3. Manuel, C. & Ortega, E. & del Pozo, M., 2020. "Marginality and Myerson values," European Journal of Operational Research, Elsevier, vol. 284(1), pages 301-312.
    4. C. Manuel & E. Ortega & M. del Pozo, 2023. "Marginality and the position value," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 459-474, July.
    5. C. Manuel & D. Martín, 2021. "A value for communication situations with players having different bargaining abilities," Annals of Operations Research, Springer, vol. 301(1), pages 161-182, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C. Manuel & D. Martín, 2021. "A value for communication situations with players having different bargaining abilities," Annals of Operations Research, Springer, vol. 301(1), pages 161-182, June.
    2. Sylvain Béal & Eric Rémila & Philippe Solal, 2015. "Discounted Tree Solutions," Working Papers hal-01377923, HAL.
    3. Liying Kang & Anna Khmelnitskaya & Erfang Shan & Dolf Talman & Guang Zhang, 2021. "The average tree value for hypergraph games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(3), pages 437-460, December.
    4. Michel Grabisch, 2013. "The core of games on ordered structures and graphs," Annals of Operations Research, Springer, vol. 204(1), pages 33-64, April.
    5. Liying Kang & Anna Khmelnitskaya & Erfang Shan & Dolf Talman & Guang Zhang, 2023. "The two-step average tree value for graph and hypergraph games," Annals of Operations Research, Springer, vol. 323(1), pages 109-129, April.
    6. Taiki Yamada, 2021. "New allocation rule of directed hypergraphs," Papers 2110.06506, arXiv.org, revised Feb 2023.
    7. Takashi Ui & Hiroyuki Kojima & Atsushi Kajii, 2011. "The Myerson value for complete coalition structures," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 427-443, December.
    8. Niharika Kakoty & Surajit Borkotokey & Rajnish Kumar & Abhijit Bora, 2024. "Weighted Myerson value for Network games," Papers 2402.11464, arXiv.org.
    9. Daniel Li Li & Erfang Shan, 2021. "Cooperative games with partial information," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(1), pages 297-309, March.
    10. Encarnacion Algaba & Rene van den Brink, 2021. "Networks, Communication and Hierarchy: Applications to Cooperative Games," Tinbergen Institute Discussion Papers 21-019/IV, Tinbergen Institute.
    11. Surajit Borkotokey & Sujata Gowala & Rajnish Kumar, 2023. "The Expected Shapley value on a class of probabilistic games," Papers 2308.03489, arXiv.org.
    12. E. Algaba & J. M. Bilbao & R. Brink & J. J. López, 2012. "The Myerson Value and Superfluous Supports in Union Stable Systems," Journal of Optimization Theory and Applications, Springer, vol. 155(2), pages 650-668, November.
    13. Jean-François Caulier & Michel Grabisch & Agnieszka Rusinowska, 2015. "An allocation rule for dynamic random network formation processes," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 60(2), pages 283-313, October.
    14. Sylvain Béal & Amandine Ghintran & Eric Rémila & Philippe Solal, 2015. "The sequential equal surplus division for rooted forest games and an application to sharing a river with bifurcations," Theory and Decision, Springer, vol. 79(2), pages 251-283, September.
    15. van den Brink, René & van der Laan, Gerard & Moes, Nigel, 2013. "A strategic implementation of the Average Tree solution for cycle-free graph games," Journal of Economic Theory, Elsevier, vol. 148(6), pages 2737-2748.
    16. Slikker, Marco & Dutta, Bhaskar & van den Nouweland, Anne & Tijs, Stef, 2000. "Potential maximizers and network formation," Mathematical Social Sciences, Elsevier, vol. 39(1), pages 55-70, January.
    17. J. Schouten & B. Dietzenbacher & P. Borm, 2022. "The nucleolus and inheritance of properties in communication situations," Annals of Operations Research, Springer, vol. 318(2), pages 1117-1135, November.
    18. E. Algaba & J. Bilbao & R. Brink, 2015. "Harsanyi power solutions for games on union stable systems," Annals of Operations Research, Springer, vol. 225(1), pages 27-44, February.
    19. Navarro, Florian, 2020. "The center value: A sharing rule for cooperative games on acyclic graphs," Mathematical Social Sciences, Elsevier, vol. 105(C), pages 1-13.
    20. Bas Dietzenbacher & Peter Borm & Ruud Hendrickx, 2017. "Decomposition of network communication games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(3), pages 407-423, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:257:y:2017:i:2:p:586-600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.