IDEAS home Printed from https://ideas.repec.org/a/eee/matsoc/v56y2008i2p269-282.html
   My bibliography  Save this article

A general procedure to compute mixed modified semivalues for cooperative games with structure of coalition blocks

Author

Listed:
  • Amer, Rafael
  • Giménez, José Miguel

Abstract

Semivalues are solution concepts for cooperative games that assign to each player a weighted sum of his/her marginal contributions to the coalitions, where the weights only depend on the coalition size. The Shapley value and the Banzhaf value are semivalues. Mixed modified semivalues are solutions for cooperative games when we consider a priori coalition blocks in the player set. For all these solutions, a computational procedure is offered in this paper.

Suggested Citation

  • Amer, Rafael & Giménez, José Miguel, 2008. "A general procedure to compute mixed modified semivalues for cooperative games with structure of coalition blocks," Mathematical Social Sciences, Elsevier, vol. 56(2), pages 269-282, September.
  • Handle: RePEc:eee:matsoc:v:56:y:2008:i:2:p:269-282
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-4896(08)00046-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pradeep Dubey & Abraham Neyman & Robert James Weber, 1981. "Value Theory Without Efficiency," Mathematics of Operations Research, INFORMS, vol. 6(1), pages 122-128, February.
    2. Albizuri, M. Josune & Zarzuelo, Jose M., 2004. "On coalitional semivalues," Games and Economic Behavior, Elsevier, vol. 49(2), pages 221-243, November.
    3. Amer, Rafael & Carreras, Francese & Gimenez, Jose Miguel, 2002. "The modified Banzhaf value for games with coalition structure: an axiomatic characterization," Mathematical Social Sciences, Elsevier, vol. 43(1), pages 45-54, January.
    4. José Alonso-Meijide & M. Fiestras-Janeiro, 2002. "Modification of the Banzhaf Value for Games with a Coalition Structure," Annals of Operations Research, Springer, vol. 109(1), pages 213-227, January.
    5. Dragan, Irinel, 1996. "New mathematical properties of the Banzhaf value," European Journal of Operational Research, Elsevier, vol. 95(2), pages 451-463, December.
    6. Guillermo Owen, 1972. "Multilinear Extensions of Games," Management Science, INFORMS, vol. 18(5-Part-2), pages 64-79, January.
    7. Rafael Amer & José Miguel giménez, 2003. "Modification of Semivalues for Games with Coalition Structures," Theory and Decision, Springer, vol. 54(3), pages 185-205, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Jones & Jennifer Wilson, 2013. "Two-step coalition values for multichoice games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(1), pages 65-99, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesc Carreras & María Albina Puente, 2012. "Symmetric Coalitional Binomial Semivalues," Group Decision and Negotiation, Springer, vol. 21(5), pages 637-662, September.
    2. José Giménez & María Puente, 2015. "A method to calculate generalized mixed modified semivalues: application to the Catalan Parliament (legislature 2012–2016)," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 669-684, October.
    3. Amer, Rafael & Gimenez, Jose Miguel, 2006. "An axiomatic characterization for regular semivalues," Mathematical Social Sciences, Elsevier, vol. 51(2), pages 217-226, March.
    4. Calvo, Emilio & Gutiérrez, Esther, 2010. "Solidarity in games with a coalition structure," Mathematical Social Sciences, Elsevier, vol. 60(3), pages 196-203, November.
    5. Rafael Amer & José Miguel Giménez, 2007. "Technical note: Characterization of binomial semivalues through delegation games," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(6), pages 702-708, September.
    6. Carreras, Francesc & Giménez, José Miguel, 2010. "Semivalues: power,potential and multilinear extensions," MPRA Paper 27620, University Library of Munich, Germany.
    7. Carreras, Francesc & Giménez, José Miguel, 2011. "Power and potential maps induced by any semivalue: Some algebraic properties and computation by multilinear extensions," European Journal of Operational Research, Elsevier, vol. 211(1), pages 148-159, May.
    8. Vidal-Puga, Juan, 2012. "The Harsanyi paradox and the “right to talk” in bargaining among coalitions," Mathematical Social Sciences, Elsevier, vol. 64(3), pages 214-224.
    9. Amer, Rafael & Gimenez, Jose Miguel, 2007. "The two-person blocks as a way to emphasize several semivalues," Mathematical Social Sciences, Elsevier, vol. 53(2), pages 172-184, March.
    10. Margarita Domènech & José Miguel Giménez & María Albina Puente, 2020. "Some Properties for Bisemivalues on Bicooperative Games," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 270-288, April.
    11. Jilei Shi & Erfang Shan, 2021. "The Banzhaf value for generalized probabilistic communication situations," Annals of Operations Research, Springer, vol. 301(1), pages 225-244, June.
    12. Gómez-Rúa, María & Vidal-Puga, Juan, 2010. "The axiomatic approach to three values in games with coalition structure," European Journal of Operational Research, Elsevier, vol. 207(2), pages 795-806, December.
    13. J. Alonso-Meijide & B. Casas-Méndez & A. González-Rueda & S. Lorenzo-Freire, 2014. "Axiomatic of the Shapley value of a game with a priori unions," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 749-770, July.
    14. Rodrigue Tido Takeng & Arnold Cedrick Soh Voutsa & Kévin Fourrey, 2023. "Decompositions of inequality measures from the perspective of the Shapley–Owen value," Theory and Decision, Springer, vol. 94(2), pages 299-331, February.
    15. J. Alonso-Meijide & B. Casas-Méndez & M. Fiestras-Janeiro & M. Holler, 2011. "The Deegan–Packel index for simple games with a priori unions," Quality & Quantity: International Journal of Methodology, Springer, vol. 45(2), pages 425-439, February.
    16. Francesc Carreras & María Albina Puente, 2018. "A note on multinomial probabilistic values," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 164-186, April.
    17. Carreras, Francesc & Puente, María Albina, 2015. "Coalitional multinomial probabilistic values," European Journal of Operational Research, Elsevier, vol. 245(1), pages 236-246.
    18. Rafael Amer & José Giménez & Antonio Magaña, 2013. "Reconstructing a simple game from a uniparametric family of allocations," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 505-523, October.
    19. Michael Jones & Jennifer Wilson, 2013. "Two-step coalition values for multichoice games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(1), pages 65-99, February.
    20. Albizuri, M.J., 2008. "Axiomatizations of the Owen value without efficiency," Mathematical Social Sciences, Elsevier, vol. 55(1), pages 78-89, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matsoc:v:56:y:2008:i:2:p:269-282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505565 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.