IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03422939.html
   My bibliography  Save this paper

Allocation rules for cooperative games with restricted communication and a priori unions based on the Myerson value and the average tree solution

Author

Listed:
  • Sylvain Béal
  • Eric Rémila
  • Philippe Solal

    (GATE Lyon Saint-Étienne - Groupe d'Analyse et de Théorie Economique Lyon - Saint-Etienne - ENS de Lyon - École normale supérieure de Lyon - UL2 - Université Lumière - Lyon 2 - UJM - Université Jean Monnet - Saint-Étienne - CNRS - Centre National de la Recherche Scientifique)

Abstract

We consider cooperatives games (TU-games) enriched by a system of a priori unions and a communication forest graph which are independent from each other. These two structures reflect the limitations of cooperation possibilities. In this framework, we introduce four Owen-type allocation rules, which are defined by a two-step application of an allocation rule à la Owen (in: Henn R, Moeschlin O (eds) Essays in mathematical economics and game theory, Springer, Berlin, 1977) to TU-games with a priori unions where the TU-game is replaced by Myerson’s (Math Oper Res 2:225–229, 1977) graph-restricted TU-game. The four possibilities arise by applying, at each step, either the Myerson value (Myerson 1977) or the average tree solution (Herings et al. in Games Econ Behav 62:77–92, 2008). Our main result offers comparable axiomatizations of these four allocation rules.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Sylvain Béal & Eric Rémila & Philippe Solal, 2021. "Allocation rules for cooperative games with restricted communication and a priori unions based on the Myerson value and the average tree solution," Post-Print hal-03422939, HAL.
  • Handle: RePEc:hal:journl:hal-03422939
    DOI: 10.1007/s10878-021-00811-4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Guang Zhang & Erfang Shan & Liying Kang & Yanxia Dong, 2017. "Two efficient values of cooperative games with graph structure based on $$\tau $$ τ -values," Journal of Combinatorial Optimization, Springer, vol. 34(2), pages 462-482, August.
    2. Richard Baron & Sylvain Béal & Eric Rémila & Philippe Solal, 2011. "Average tree solutions and the distribution of Harsanyi dividends," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(2), pages 331-349, May.
    3. Sylvain Béal & Eric Rémila & Philippe Solal, 2012. "Compensations in the Shapley value and the compensation solutions for graph games," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(1), pages 157-178, February.
    4. Herings, P.J.J. & van der Laan, G. & Talman, A.J.J. & Yang, Z., 2010. "The average tree solution for cooperative games with communication structure," Games and Economic Behavior, Elsevier, vol. 68(2), pages 626-633, March.
    5. Le Breton, M & Owen, G & Weber, S, 1992. "Strongly Balanced Cooperative Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(4), pages 419-427.
    6. Gómez-Rúa, María & Vidal-Puga, Juan, 2010. "The axiomatic approach to three values in games with coalition structure," European Journal of Operational Research, Elsevier, vol. 207(2), pages 795-806, December.
    7. Debasis Mishra & A. Talman, 2010. "A characterization of the average tree solution for tree games," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(1), pages 105-111, March.
    8. Roger B. Myerson, 1977. "Graphs and Cooperation in Games," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 225-229, August.
    9. Gabrielle Demange, 2004. "On Group Stability in Hierarchies and Networks," Journal of Political Economy, University of Chicago Press, vol. 112(4), pages 754-778, August.
    10. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2015. "Characterization of the Average Tree solution and its kernel," Journal of Mathematical Economics, Elsevier, vol. 60(C), pages 159-165.
    11. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2010. "Rooted-tree solutions for tree games," European Journal of Operational Research, Elsevier, vol. 203(2), pages 404-408, June.
    12. Selçuk, Özer & Suzuki, Takamasa & Talman, Dolf, 2013. "Equivalence and axiomatization of solutions for cooperative games with circular communication structure," Economics Letters, Elsevier, vol. 121(3), pages 428-431.
    13. Sylvain Béal & Anna Khmelnitskaya & Philippe Solal, 2018. "Two-step values for games with two-level communication structure," Journal of Combinatorial Optimization, Springer, vol. 35(2), pages 563-587, February.
    14. Amer, Rafael & Carreras, Francese & Gimenez, Jose Miguel, 2002. "The modified Banzhaf value for games with coalition structure: an axiomatic characterization," Mathematical Social Sciences, Elsevier, vol. 43(1), pages 45-54, January.
    15. Mishra, D. & Talman, A.J.J., 2009. "A Characterization of the Average Tree Solution for Cycle-Free Graph Games," Discussion Paper 2009-17, Tilburg University, Center for Economic Research.
    16. van den Brink, René & van der Laan, Gerard & Moes, Nigel, 2012. "Fair agreements for sharing international rivers with multiple springs and externalities," Journal of Environmental Economics and Management, Elsevier, vol. 63(3), pages 388-403.
    17. Herings, P. Jean Jacques & van der Laan, Gerard & Talman, Dolf, 2008. "The average tree solution for cycle-free graph games," Games and Economic Behavior, Elsevier, vol. 62(1), pages 77-92, January.
    18. AUMANN, Robert J. & DREZE, Jacques H., 1974. "Cooperative games with coalition structures," LIDAM Reprints CORE 217, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    19. Sylvain Béal & Eric Rémila & Philippe Solal, 2015. "Discounted Tree Solutions," Working Papers hal-01377923, HAL.
    20. José Alonso-Meijide & M. Fiestras-Janeiro, 2002. "Modification of the Banzhaf Value for Games with a Coalition Structure," Annals of Operations Research, Springer, vol. 109(1), pages 213-227, January.
    21. Casas-Mendez, Balbina & Garcia-Jurado, Ignacio & van den Nouweland, Anne & Vazquez-Brage, Margarita, 2003. "An extension of the [tau]-value to games with coalition structures," European Journal of Operational Research, Elsevier, vol. 148(3), pages 494-513, August.
    22. Hart, Sergiu & Kurz, Mordecai, 1983. "Endogenous Formation of Coalitions," Econometrica, Econometric Society, vol. 51(4), pages 1047-1064, July.
    23. Alonso-Meijide, J.M. & Álvarez-Mozos, M. & Fiestras-Janeiro, M.G., 2009. "Values of games with graph restricted communication and a priori unions," Mathematical Social Sciences, Elsevier, vol. 58(2), pages 202-213, September.
    24. Vazquez-Brage, Margarita & Garcia-Jurado, Ignacio & Carreras, Francesc, 1996. "The Owen Value Applied to Games with Graph-Restricted Communication," Games and Economic Behavior, Elsevier, vol. 12(1), pages 42-53, January.
    25. René Brink & Anna Khmelnitskaya & Gerard Laan, 2016. "An Owen-type value for games with two-level communication structure," Annals of Operations Research, Springer, vol. 243(1), pages 179-198, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2015. "Characterization of the Average Tree solution and its kernel," Journal of Mathematical Economics, Elsevier, vol. 60(C), pages 159-165.
    2. Sylvain Béal & Anna Khmelnitskaya & Philippe Solal, 2018. "Two-step values for games with two-level communication structure," Journal of Combinatorial Optimization, Springer, vol. 35(2), pages 563-587, February.
    3. Michel Grabisch, 2013. "The core of games on ordered structures and graphs," Annals of Operations Research, Springer, vol. 204(1), pages 33-64, April.
    4. S. Béal & A. Lardon & E. Rémila & P. Solal, 2012. "The average tree solution for multi-choice forest games," Annals of Operations Research, Springer, vol. 196(1), pages 27-51, July.
    5. Anna Khmelnitskaya & Gerard van der Laan & Dolf Talman, 2016. "Centrality Rewarding Shapley and Myerson Values for Undirected Graph Games," Tinbergen Institute Discussion Papers 16-070/II, Tinbergen Institute.
    6. Béal, Sylvain & Rémila, Eric & Solal, Philippe, 2012. "Weighted component fairness for forest games," Mathematical Social Sciences, Elsevier, vol. 64(2), pages 144-151.
    7. Sylvain Béal & André Casajus & Frank Huettner, 2018. "Efficient extensions of communication values," Annals of Operations Research, Springer, vol. 264(1), pages 41-56, May.
    8. van den Brink, René & van der Laan, Gerard & Moes, Nigel, 2013. "A strategic implementation of the Average Tree solution for cycle-free graph games," Journal of Economic Theory, Elsevier, vol. 148(6), pages 2737-2748.
    9. Liying Kang & Anna Khmelnitskaya & Erfang Shan & Dolf Talman & Guang Zhang, 2021. "The average tree value for hypergraph games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 94(3), pages 437-460, December.
    10. Suzuki, T. & Talman, A.J.J., 2011. "Solution Concepts for Cooperative Games with Circular Communication Structure," Discussion Paper 2011-100, Tilburg University, Center for Economic Research.
    11. Tejada, O. & Álvarez-Mozos, M., 2018. "Graphs and (levels of) cooperation in games: Two ways how to allocate the surplus," Mathematical Social Sciences, Elsevier, vol. 93(C), pages 114-122.
    12. Richard Baron & Sylvain Béal & Eric Rémila & Philippe Solal, 2011. "Average tree solutions and the distribution of Harsanyi dividends," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(2), pages 331-349, May.
    13. Sylvain Béal & Eric Rémila & Philippe Solal, 2012. "Compensations in the Shapley value and the compensation solutions for graph games," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(1), pages 157-178, February.
    14. László Á. Kóczy, 2018. "Partition Function Form Games," Theory and Decision Library C, Springer, number 978-3-319-69841-0, September.
    15. Özer Selçuk & Takamasa Suzuki, 2023. "Comparable axiomatizations of the average tree solution and the Myerson value," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(2), pages 333-362, June.
    16. Caulier, Jean-François & Mauleon, Ana & Vannetelbosch, Vincent, 2015. "Allocation rules for coalitional network games," Mathematical Social Sciences, Elsevier, vol. 78(C), pages 80-88.
    17. Sylvain Béal & Eric Rémila & Philippe Solal, 2015. "Discounted Tree Solutions," Working Papers hal-01377923, HAL.
    18. Kongo, Takumi, 2011. "Value of games with two-layered hypergraphs," Mathematical Social Sciences, Elsevier, vol. 62(2), pages 114-119, September.
    19. René Brink & P. Herings & Gerard Laan & A. Talman, 2015. "The Average Tree permission value for games with a permission tree," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 58(1), pages 99-123, January.
    20. Liying Kang & Anna Khmelnitskaya & Erfang Shan & Dolf Talman & Guang Zhang, 2023. "The two-step average tree value for graph and hypergraph games," Annals of Operations Research, Springer, vol. 323(1), pages 109-129, April.

    More about this item

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03422939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.