IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v51y2018i4d10.1007_s10614-017-9656-x.html
   My bibliography  Save this article

A Linear Stochastic Programming Model for Optimal Leveraged Portfolio Selection

Author

Listed:
  • Davi Michel Valladão

    (Pontifical Catholic University of Rio de Janeiro)

  • Álvaro Veiga

    (Pontifical Catholic University of Rio de Janeiro)

  • Alexandre Street

    (Pontifical Catholic University of Rio de Janeiro)

Abstract

The literature of portfolio optimization is extensive and covers several important aspects of the asset allocation problem. However, previous works consider simplified linear borrowing cost functions that leads to suboptimal allocations. This paper aims at efficiently solving the leveraged portfolio selection problem with a thorough borrowing cost representation comprising a number lenders with different rates and credit limits. We propose a two-stage stochastic programming model for asset and debt allocation considering a CVaR-based risk constraint and a convex piecewise-linear borrowing cost function. We compare our model to its counterpart with the fixed borrowing rate approximation used in literature. Numerical results show our model significantly improves performance in terms of risk-return trade-off.

Suggested Citation

  • Davi Michel Valladão & Álvaro Veiga & Alexandre Street, 2018. "A Linear Stochastic Programming Model for Optimal Leveraged Portfolio Selection," Computational Economics, Springer;Society for Computational Economics, vol. 51(4), pages 1021-1032, April.
  • Handle: RePEc:kap:compec:v:51:y:2018:i:4:d:10.1007_s10614-017-9656-x
    DOI: 10.1007/s10614-017-9656-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-017-9656-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-017-9656-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Petri Hilli & Matti Koivu & Teemu Pennanen & Antero Ranne, 2007. "A stochastic programming model for asset liability management of a Finnish pension company," Annals of Operations Research, Springer, vol. 152(1), pages 115-139, July.
    2. Kouwenberg, Roy, 2001. "Scenario generation and stochastic programming models for asset liability management," European Journal of Operational Research, Elsevier, vol. 134(2), pages 279-292, October.
    3. Valladão, Davi M. & Veiga, Álvaro & Veiga, Geraldo, 2014. "A multistage linear stochastic programming model for optimal corporate debt management," European Journal of Operational Research, Elsevier, vol. 237(1), pages 303-311.
    4. Rudloff, Birgit & Street, Alexandre & Valladão, Davi M., 2014. "Time consistency and risk averse dynamic decision models: Definition, interpretation and practical consequences," European Journal of Operational Research, Elsevier, vol. 234(3), pages 743-750.
    5. David B. Brown & James E. Smith, 2011. "Dynamic Portfolio Optimization with Transaction Costs: Heuristics and Dual Bounds," Management Science, INFORMS, vol. 57(10), pages 1752-1770, October.
    6. Riedel, Frank, 2004. "Dynamic coherent risk measures," Stochastic Processes and their Applications, Elsevier, vol. 112(2), pages 185-200, August.
    7. Jocelyne Bion-Nadal, 2008. "Dynamic risk measures: Time consistency and risk measures from BMO martingales," Finance and Stochastics, Springer, vol. 12(2), pages 219-244, April.
    8. Detlefsen, Kai & Scandolo, Giacomo, 2005. "Conditional and dynamic convex risk measures," SFB 649 Discussion Papers 2005-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    9. Kai Detlefsen & Giacomo Scandolo, 2005. "Conditional and dynamic convex risk measures," Finance and Stochastics, Springer, vol. 9(4), pages 539-561, October.
    10. Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2014. "Recent Developments in Robust Portfolios with a Worst-Case Approach," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 103-121, April.
    11. Fernandes, Betina & Street, Alexandre & Valladão, Davi & Fernandes, Cristiano, 2016. "An adaptive robust portfolio optimization model with loss constraints based on data-driven polyhedral uncertainty sets," European Journal of Operational Research, Elsevier, vol. 255(3), pages 961-970.
    12. Roorda, Berend & Schumacher, J.M., 2007. "Time consistency conditions for acceptability measures, with an application to Tail Value at Risk," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 209-230, March.
    13. Aharon Ben‐Tal & Marc Teboulle, 2007. "An Old‐New Concept Of Convex Risk Measures: The Optimized Certainty Equivalent," Mathematical Finance, Wiley Blackwell, vol. 17(3), pages 449-476, July.
    14. Date, P. & Canepa, A. & Abdel-Jawad, M., 2011. "A mixed integer linear programming model for optimal sovereign debt issuance," European Journal of Operational Research, Elsevier, vol. 214(3), pages 749-758, November.
    15. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    16. David R. Cariño & William T. Ziemba, 1998. "Formulation of the Russell-Yasuda Kasai Financial Planning Model," Operations Research, INFORMS, vol. 46(4), pages 433-449, August.
    17. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    18. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.
    2. Gutierrez, Tomás & Pagnoncelli, Bernardo & Valladão, Davi & Cifuentes, Arturo, 2019. "Can asset allocation limits determine portfolio risk–return profiles in DC pension schemes?," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 134-144.
    3. Davi Valladão & Thuener Silva & Marcus Poggi, 2019. "Time-consistent risk-constrained dynamic portfolio optimization with transactional costs and time-dependent returns," Annals of Operations Research, Springer, vol. 282(1), pages 379-405, November.
    4. Xiaonan Chen & Jianfeng Song, 2022. "Influence Path Analysis of Rural Household Portfolio Selection: A Empirical Study Using Structural Equation Modelling Method," The Journal of Real Estate Finance and Economics, Springer, vol. 64(2), pages 298-322, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davi Valladão & Thuener Silva & Marcus Poggi, 2019. "Time-consistent risk-constrained dynamic portfolio optimization with transactional costs and time-dependent returns," Annals of Operations Research, Springer, vol. 282(1), pages 379-405, November.
    2. Dan A. Iancu & Marek Petrik & Dharmashankar Subramanian, 2015. "Tight Approximations of Dynamic Risk Measures," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 655-682, March.
    3. Qinyu Wu & Fan Yang & Ping Zhang, 2023. "Conditional generalized quantiles based on expected utility model and equivalent characterization of properties," Papers 2301.12420, arXiv.org.
    4. Acciaio, Beatrice & Föllmer, Hans & Penner, Irina, 2012. "Risk assessment for uncertain cash flows: model ambiguity, discounting ambiguity, and the role of bubbles," LSE Research Online Documents on Economics 50118, London School of Economics and Political Science, LSE Library.
    5. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    6. Rudloff, Birgit & Street, Alexandre & Valladão, Davi M., 2014. "Time consistency and risk averse dynamic decision models: Definition, interpretation and practical consequences," European Journal of Operational Research, Elsevier, vol. 234(3), pages 743-750.
    7. Bion-Nadal, Jocelyne, 2009. "Time consistent dynamic risk processes," Stochastic Processes and their Applications, Elsevier, vol. 119(2), pages 633-654, February.
    8. Roorda Berend & Schumacher Hans, 2013. "Membership conditions for consistent families of monetary valuations," Statistics & Risk Modeling, De Gruyter, vol. 30(3), pages 255-280, August.
    9. Stadje, Mitja, 2010. "Extending dynamic convex risk measures from discrete time to continuous time: A convergence approach," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 391-404, December.
    10. Beatrice Acciaio & Hans Föllmer & Irina Penner, 2012. "Risk assessment for uncertain cash flows: model ambiguity, discounting ambiguity, and the role of bubbles," Finance and Stochastics, Springer, vol. 16(4), pages 669-709, October.
    11. Beatrice Acciaio & Irina Penner, 2010. "Dynamic risk measures," Papers 1002.3794, arXiv.org.
    12. Beatrice Acciaio & Hans Foellmer & Irina Penner, 2010. "Risk assessment for uncertain cash flows: Model ambiguity, discounting ambiguity, and the role of bubbles," Papers 1002.3627, arXiv.org.
    13. Zachary Feinstein & Birgit Rudloff, 2018. "Scalar multivariate risk measures with a single eligible asset," Papers 1807.10694, arXiv.org, revised Feb 2021.
    14. Fei Sun & Jingchao Li & Jieming Zhou, 2018. "Dynamic risk measures with fluctuation of market volatility under Bochne-Lebesgue space," Papers 1806.01166, arXiv.org, revised Mar 2024.
    15. Jocelyne Bion-Nadal, 2006. "Time Consistent Dynamic Risk Processes, Cadlag Modification," Papers math/0607212, arXiv.org.
    16. Geissel Sebastian & Sass Jörn & Seifried Frank Thomas, 2018. "Optimal expected utility risk measures," Statistics & Risk Modeling, De Gruyter, vol. 35(1-2), pages 73-87, January.
    17. Yi Shen & Zachary Van Oosten & Ruodu Wang, 2024. "Partial Law Invariance and Risk Measures," Papers 2401.17265, arXiv.org, revised Jun 2024.
    18. Zachary Feinstein & Birgit Rudloff, 2018. "Time consistency for scalar multivariate risk measures," Papers 1810.04978, arXiv.org, revised Nov 2021.
    19. Zachary Feinstein & Birgit Rudloff, 2015. "Multi-portfolio time consistency for set-valued convex and coherent risk measures," Finance and Stochastics, Springer, vol. 19(1), pages 67-107, January.
    20. Andrzej Ruszczynski & Jianing Yao, 2017. "A Dual Method For Backward Stochastic Differential Equations with Application to Risk Valuation," Papers 1701.06234, arXiv.org, revised Aug 2020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:51:y:2018:i:4:d:10.1007_s10614-017-9656-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.