IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v57y2011i10p1752-1770.html
   My bibliography  Save this article

Dynamic Portfolio Optimization with Transaction Costs: Heuristics and Dual Bounds

Author

Listed:
  • David B. Brown

    (Fuqua School of Business, Duke University, Durham, North Carolina 27708)

  • James E. Smith

    (Fuqua School of Business, Duke University, Durham, North Carolina 27708)

Abstract

We consider the problem of dynamic portfolio optimization in a discrete-time, finite-horizon setting. Our general model considers risk aversion, portfolio constraints (e.g., no short positions), return predictability, and transaction costs. This problem is naturally formulated as a stochastic dynamic program. Unfortunately, with nonzero transaction costs, the dimension of the state space is at least as large as the number of assets, and the problem is very difficult to solve with more than one or two assets. In this paper, we consider several easy-to-compute heuristic trading strategies that are based on optimizing simpler models. We complement these heuristics with upper bounds on the performance with an optimal trading strategy. These bounds are based on the dual approach developed in Brown et al. (Brown, D. B., J. E. Smith, P. Sun. 2009. Information relaxations and duality in stochastic dynamic programs. Oper. Res . 58 (4) 785-801). In this context, these bounds are given by considering an investor who has access to perfect information about future returns but is penalized for using this advance information. These heuristic strategies and bounds can be evaluated using Monte Carlo simulation. We evaluate these heuristics and bounds in numerical experiments with a risk-free asset and 3 or 10 risky assets. In many cases, the performance of the heuristic strategy is very close to the upper bound, indicating that the heuristic strategies are very nearly optimal. This paper was accepted by Dimitris Bertsimas, optimization.

Suggested Citation

  • David B. Brown & James E. Smith, 2011. "Dynamic Portfolio Optimization with Transaction Costs: Heuristics and Dual Bounds," Management Science, INFORMS, vol. 57(10), pages 1752-1770, October.
  • Handle: RePEc:inm:ormnsc:v:57:y:2011:i:10:p:1752-1770
    DOI: 10.1287/mnsc.1110.1377
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.1110.1377
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.1110.1377?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nicolae Gârleanu & Lasse Heje Pedersen, 2013. "Dynamic Trading with Predictable Returns and Transaction Costs," Journal of Finance, American Finance Association, vol. 68(6), pages 2309-2340, December.
    2. Martin Haugh & Ashish Jain, 2011. "The dual approach to portfolio evaluation: a comparison of the static, myopic and generalized buy-and-hold strategies," Quantitative Finance, Taylor & Francis Journals, vol. 11(1), pages 81-99.
    3. Martin B. Haugh & Leonid Kogan & Jiang Wang, 2006. "Evaluating Portfolio Policies: A Duality Approach," Operations Research, INFORMS, vol. 54(3), pages 405-418, June.
    4. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    5. Lynch, Anthony W. & Tan, Sinan, 2010. "Multiple Risky Assets, Transaction Costs, and Return Predictability: Allocation Rules and Implications for U.S. Investors," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(4), pages 1015-1053, August.
    6. Muthuraman, Kumar, 2007. "A computational scheme for optimal investment - consumption with proportional transaction costs," Journal of Economic Dynamics and Control, Elsevier, vol. 31(4), pages 1132-1159, April.
    7. Paul A. Samuelson, 2011. "Lifetime Portfolio Selection by Dynamic Stochastic Programming," World Scientific Book Chapters, in: Leonard C MacLean & Edward O Thorp & William T Ziemba (ed.), THE KELLY CAPITAL GROWTH INVESTMENT CRITERION THEORY and PRACTICE, chapter 31, pages 465-472, World Scientific Publishing Co. Pte. Ltd..
    8. Kumar Muthuraman & Sunil Kumar, 2006. "Multidimensional Portfolio Optimization With Proportional Transaction Costs," Mathematical Finance, Wiley Blackwell, vol. 16(2), pages 301-335, April.
    9. Leif Andersen & Mark Broadie, 2004. "Primal-Dual Simulation Algorithm for Pricing Multidimensional American Options," Management Science, INFORMS, vol. 50(9), pages 1222-1234, September.
    10. M. H. A. Davis & A. R. Norman, 1990. "Portfolio Selection with Transaction Costs," Mathematics of Operations Research, INFORMS, vol. 15(4), pages 676-713, November.
    11. George M. Constantinides, 1979. "Multiperiod Consumption and Investment Behavior with Convex Transactions Costs," Management Science, INFORMS, vol. 25(11), pages 1127-1137, November.
    12. Kumar Muthuraman & Haining Zha, 2008. "Simulation‐Based Portfolio Optimization For Large Portfolios With Transaction Costs," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 115-134, January.
    13. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    14. Martin B. Haugh & Leonid Kogan, 2004. "Pricing American Options: A Duality Approach," Operations Research, INFORMS, vol. 52(2), pages 258-270, April.
    15. MOSSIN, Jan, 1968. "Optimal multiperiod portfolio policies," LIDAM Reprints CORE 19, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. L. C. G. Rogers, 2002. "Monte Carlo valuation of American options," Mathematical Finance, Wiley Blackwell, vol. 12(3), pages 271-286, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark Broadie & Weiwei Shen, 2016. "High-Dimensional Portfolio Optimization With Transaction Costs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-49, June.
    2. Rongju Zhang & Nicolas Langren'e & Yu Tian & Zili Zhu & Fima Klebaner & Kais Hamza, 2016. "Dynamic portfolio optimization with liquidity cost and market impact: a simulation-and-regression approach," Papers 1610.07694, arXiv.org, revised Jun 2019.
    3. Davi Valladão & Thuener Silva & Marcus Poggi, 2019. "Time-consistent risk-constrained dynamic portfolio optimization with transactional costs and time-dependent returns," Annals of Operations Research, Springer, vol. 282(1), pages 379-405, November.
    4. repec:cte:wsrepe:ws1521 is not listed on IDEAS
    5. Mei, Xiaoling & Nogales, Francisco J., 2018. "Portfolio selection with proportional transaction costs and predictability," Journal of Banking & Finance, Elsevier, vol. 94(C), pages 131-151.
    6. Ma, Guiyuan & Siu, Chi Chung & Zhu, Song-Ping, 2019. "Dynamic portfolio choice with return predictability and transaction costs," European Journal of Operational Research, Elsevier, vol. 278(3), pages 976-988.
    7. Yao, Haixiang & Li, Danping & Wu, Huiling, 2022. "Dynamic trading with uncertain exit time and transaction costs in a general Markov market," International Review of Financial Analysis, Elsevier, vol. 84(C).
    8. Yongyang Cai & Kenneth L. Judd & Rong Xu, 2013. "Numerical Solution of Dynamic Portfolio Optimization with Transaction Costs," NBER Working Papers 18709, National Bureau of Economic Research, Inc.
    9. Miguel, Víctor de & Nogales, Francisco J., 2013. "Multiperiod portfolio selection with transaction and market-impact costs," DES - Working Papers. Statistics and Econometrics. WS ws131615, Universidad Carlos III de Madrid. Departamento de Estadística.
    10. Ma, Guiyuan & Siu, Chi Chung & Zhu, Song-Ping, 2020. "Optimal investment and consumption with return predictability and execution costs," Economic Modelling, Elsevier, vol. 88(C), pages 408-419.
    11. Collin-Dufresne, Pierre & Daniel, Kent & Sağlam, Mehmet, 2020. "Liquidity regimes and optimal dynamic asset allocation," Journal of Financial Economics, Elsevier, vol. 136(2), pages 379-406.
    12. Hung-Hsi Huang & David Jou, 2009. "Multiperiod dynamic investment for a generalized situation," Applied Financial Economics, Taylor & Francis Journals, vol. 19(21), pages 1761-1766.
    13. Jin, Xing & Li, Xun & Tan, Hwee Huat & Wu, Zhenyu, 2013. "A computationally efficient state-space partitioning approach to pricing high-dimensional American options via dimension reduction," European Journal of Operational Research, Elsevier, vol. 231(2), pages 362-370.
    14. Nabeel Butt, 2019. "On Discrete Probability Approximations for Transaction Cost Problems," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 26(3), pages 365-389, September.
    15. Mei, Xiaoling & DeMiguel, Victor & Nogales, Francisco J., 2016. "Multiperiod portfolio optimization with multiple risky assets and general transaction costs," Journal of Banking & Finance, Elsevier, vol. 69(C), pages 108-120.
    16. Michal Czerwonko & Stylianos Perrakis, 2016. "Portfolio Selection with Transaction Costs and Jump-Diffusion Asset Dynamics I: A Numerical Solution," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 6(04), pages 1-23, December.
    17. Penikas, Henry, 2010. "Copula-Models in Foreign Exchange Risk-Management of a Bank," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 17(1), pages 62-87.
    18. Dai, Min & Wang, Hefei & Yang, Zhou, 2012. "Leverage management in a bull–bear switching market," Journal of Economic Dynamics and Control, Elsevier, vol. 36(10), pages 1585-1599.
    19. Alain Bensoussan & Ka Chun Cheung & Yiqun Li & Sheung Chi Phillip Yam, 2022. "Inter‐temporal mutual‐fund management," Mathematical Finance, Wiley Blackwell, vol. 32(3), pages 825-877, July.
    20. Zuo Quan Xu & Fahuai Yi, 2014. "An Optimal Consumption-Investment Model with Constraint on Consumption," Papers 1404.7698, arXiv.org.
    21. Girlich, Hans-Joachim, 2003. "Transaction costs in finance and inventory research," International Journal of Production Economics, Elsevier, vol. 81(1), pages 341-350, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:57:y:2011:i:10:p:1752-1770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.