IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v319y2024i1p292-302.html
   My bibliography  Save this article

Solving constrained consumption–investment problems by decomposition algorithms

Author

Listed:
  • Pagnoncelli, Bernardo K.
  • Homem-de-Mello, Tito
  • Lagos, Guido
  • Castañeda, Pablo
  • García, Javier

Abstract

Consumption–investment problems with maximizing utility agents are usually considered from a theoretical viewpoint, aiming at closed-form solutions for the optimal policy. However, such an approach requires that the model be relatively simple: even the inclusion of nonnegativity constraints can prevent the derivation of explicit solutions. In such cases, it is necessary to solve the problem numerically, but standard dynamic programming algorithms can only solve small problems due to the curse of dimensionality. In this paper, we adapt the Stochastic Dual Dynamic Programming (SDDP) algorithm to solve dynamic constrained consumption–investment problems with stochastic labor income numerically. Unlike classical dynamic programming approaches, SDDP allows us to analyze problems with multiple assets, and an internal sampling procedure allows the problems to have a very large, or even infinite, number of scenarios. We start with a simpler problem for which a closed-form solution is known and compare it to the optimal policy obtained by SDDP. We then illustrate the flexibility of our approach by solving a defined contribution pension fund problem with multiple assets, for which no closed-form solution is available.

Suggested Citation

  • Pagnoncelli, Bernardo K. & Homem-de-Mello, Tito & Lagos, Guido & Castañeda, Pablo & García, Javier, 2024. "Solving constrained consumption–investment problems by decomposition algorithms," European Journal of Operational Research, Elsevier, vol. 319(1), pages 292-302.
  • Handle: RePEc:eee:ejores:v:319:y:2024:i:1:p:292-302
    DOI: 10.1016/j.ejor.2024.06.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724004752
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.06.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:319:y:2024:i:1:p:292-302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.