IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v34y2022i6p3151-3169.html
   My bibliography  Save this article

Stochastic Dual Dynamic Programming for Multiechelon Lot Sizing with Component Substitution

Author

Listed:
  • Simon Thevenin

    (IMT Atlantique, LS2N-CNRS, 44307 Nantes, France)

  • Yossiri Adulyasak

    (GERAD and Department of Logistics and Operations Management, HEC Montréal, Montréal, Quebec H3T 2A7, Canada)

  • Jean-François Cordeau

    (GERAD and Department of Logistics and Operations Management, HEC Montréal, Montréal, Quebec H3T 2A7, Canada)

Abstract

This work investigates lot sizing with component substitution under demand uncertainty. The integration of component substitution with lot sizing in an uncertain demand context is important because the consolidation of the demand for components naturally allows risk-pooling and reduces operating costs. The considered problem is relevant not only in a production context, but also in the context of distribution planning. We propose a stochastic programming formulation for the static–dynamic type of uncertainty, in which the setup decisions are frozen but the production and consumption quantities are decided dynamically. To tackle the scalability issues commonly encountered in multistage stochastic optimization, this paper investigates the use of stochastic dual dynamic programming (SDDP). In addition, we consider various improvements of SDDP, including the use of strong cuts, the fast generation of cuts by solving the linear relaxation of the problem, and retaining the average demand scenarios. Finally, we propose two heuristics, namely, a hybrid of progressive hedging with SDDP and a heuristic version of SDDP. Computational experiments conducted on well-known instances from the literature show that the heuristic version of SDDP outperforms other methods. The proposed method can plan with up to 10 decision stages and 20 scenarios per stage, which results in 20 10 scenario paths in total. Moreover, as the heuristic version of SDDP can replan to account for new information in less than a second, it is convenient in a dynamic context. Summary of Contribution: We believe our paper is suitable for the mission and scope of IJOC because we design efficient algorithms to solve an operations research problem. More precisely, we investigate the use of stochastic dual dynamic programming (SDDP) for lot sizing with component substitution under demand uncertainty. In this work, we consider the static–dynamic decision framework, and a good approximation of the expected costs in this context requires us to solve the problem with a large number of scenarios of future demand. As solving the considered problem is computationally intensive, we investigate the use of SDDP, which decomposes the problem per decision stage. We study several enhancements of SDDP, such as the use of strong cuts, the incorporation of a lower bound computed with the average demand scenario, the multicut version of SDDP, and scenario sampling with randomized quasi–Monte Carlo. Despite these improvements, the convergence of SDDP remains slow. Consequently, we propose a heuristic version of SDDP and a hybrid of progressive hedging and SDDP. We present the results of an extensive computational study performed on well-known instances from the literature. The results show that the heuristic SDDP outperforms the hybrid of progressive hedging with SDDP and state-of-the-art methods from the literature. Besides, our analysis shows that component substitution can pool the risk, and it allows maintaining the same service level with less inventory. The presented methodology can be used by practitioners to size their production lots, and subsequent researchers can build upon our results to consider uncertainty in other parameters, such as lead times, yields, and production capacities.

Suggested Citation

  • Simon Thevenin & Yossiri Adulyasak & Jean-François Cordeau, 2022. "Stochastic Dual Dynamic Programming for Multiechelon Lot Sizing with Component Substitution," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3151-3169, November.
  • Handle: RePEc:inm:orijoc:v:34:y:2022:i:6:p:3151-3169
    DOI: 10.1287/ijoc.2022.1215
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2022.1215
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2022.1215?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ford W. Harris, 1990. "How Many Parts to Make at Once," Operations Research, INFORMS, vol. 38(6), pages 947-950, December.
    2. Horst Tempelmeier, 2013. "Stochastic Lot Sizing Problems," International Series in Operations Research & Management Science, in: J. MacGregor Smith & Barış Tan (ed.), Handbook of Stochastic Models and Analysis of Manufacturing System Operations, edition 127, chapter 0, pages 313-344, Springer.
    3. Mehdi Firoozi & M. Zied Babai & Walid Klibi & Yves Ducq, 2020. "Distribution planning for multi-echelon networks considering multiple sourcing and lateral transshipments," International Journal of Production Research, Taylor & Francis Journals, vol. 58(7), pages 1968-1986, April.
    4. James H. Bookbinder & Jin-Yan Tan, 1988. "Strategies for the Probabilistic Lot-Sizing Problem with Service-Level Constraints," Management Science, INFORMS, vol. 34(9), pages 1096-1108, September.
    5. Shapiro, Alexander, 2011. "Analysis of stochastic dual dynamic programming method," European Journal of Operational Research, Elsevier, vol. 209(1), pages 63-72, February.
    6. Sreedevi, R. & Saranga, Haritha, 2017. "Uncertainty and supply chain risk: The moderating role of supply chain flexibility in risk mitigation," International Journal of Production Economics, Elsevier, vol. 193(C), pages 332-342.
    7. Simon Thevenin & Yossiri Adulyasak & Jean‐François Cordeau, 2021. "Material Requirements Planning Under Demand Uncertainty Using Stochastic Optimization," Production and Operations Management, Production and Operations Management Society, vol. 30(2), pages 475-493, February.
    8. T. L. Magnanti & R. T. Wong, 1981. "Accelerating Benders Decomposition: Algorithmic Enhancement and Model Selection Criteria," Operations Research, INFORMS, vol. 29(3), pages 464-484, June.
    9. Huseyin Tunc & Onur A. Kilic & S. Armagan Tarim & Roberto Rossi, 2018. "An Extended Mixed-Integer Programming Formulation and Dynamic Cut Generation Approach for the Stochastic Lot-Sizing Problem," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 492-506, August.
    10. Joseph Begnaud & Saif Benjaafar & Lisa Miller, 2009. "The multi-level lot sizing problem with flexible production sequences," IISE Transactions, Taylor & Francis Journals, vol. 41(8), pages 702-715.
    11. Han, Guanghua & Dong, Ming & Liu, Shaoxuan, 2014. "Yield and allocation management in a continuous make-to-stock system with demand upgrade substitution," International Journal of Production Economics, Elsevier, vol. 156(C), pages 124-131.
    12. Tao Wu & Kerem Akartunal? & Raf Jans & Zhe Liang, 2017. "Progressive Selection Method for the Coupled Lot-Sizing and Cutting-Stock Problem," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 523-543, August.
    13. R. T. Rockafellar & Roger J.-B. Wets, 1991. "Scenarios and Policy Aggregation in Optimization Under Uncertainty," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 119-147, February.
    14. Grubbstrom, Robert W. & Wang, Zhiping, 2003. "A stochastic model of multi-level/multi-stage capacity-constrained production-inventory systems," International Journal of Production Economics, Elsevier, vol. 81(1), pages 483-494, January.
    15. Arthur Hsu & Yehuda Bassok, 1999. "Random Yield and Random Demand in a Production System with Downward Substitution," Operations Research, INFORMS, vol. 47(2), pages 277-290, April.
    16. Panos Parpas & Berk Ustun & Mort Webster & Quang Kha Tran, 2015. "Importance Sampling in Stochastic Programming: A Markov Chain Monte Carlo Approach," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 358-377, May.
    17. Shin, Hojung & Park, Soohoon & Lee, Euncheol & Benton, W.C., 2015. "A classification of the literature on the planning of substitutable products," European Journal of Operational Research, Elsevier, vol. 246(3), pages 686-699.
    18. Wei, Mingyuan & Qi, Mingyao & Wu, Tao & Zhang, Canrong, 2019. "Distance and matching-induced search algorithm for the multi-level lot-sizing problem with substitutable bill of materials," European Journal of Operational Research, Elsevier, vol. 277(2), pages 521-541.
    19. Haugen, Kjetil K. & Lokketangen, Arne & Woodruff, David L., 2001. "Progressive hedging as a meta-heuristic applied to stochastic lot-sizing," European Journal of Operational Research, Elsevier, vol. 132(1), pages 116-122, July.
    20. Donald Erlenkotter, 1978. "A Dual-Based Procedure for Uncapacitated Facility Location," Operations Research, INFORMS, vol. 26(6), pages 992-1009, December.
    21. Horst Tempelmeier & Matthias Derstroff, 1996. "A Lagrangean-Based Heuristic for Dynamic Multilevel Multiitem Constrained Lotsizing with Setup Times," Management Science, INFORMS, vol. 42(5), pages 738-757, May.
    22. Davi Valladão & Thuener Silva & Marcus Poggi, 2019. "Time-consistent risk-constrained dynamic portfolio optimization with transactional costs and time-dependent returns," Annals of Operations Research, Springer, vol. 282(1), pages 379-405, November.
    23. Huang, Di & Zhou, Hong & Zhao, Qiu-Hong, 2011. "A competitive multiple-product newsboy problem with partial product substitution," Omega, Elsevier, vol. 39(3), pages 302-312, June.
    24. Lohmann, Timo & Hering, Amanda S. & Rebennack, Steffen, 2016. "Spatio-temporal hydro forecasting of multireservoir inflows for hydro-thermal scheduling," European Journal of Operational Research, Elsevier, vol. 255(1), pages 243-258.
    25. Yossiri Adulyasak & Jean-François Cordeau & Raf Jans, 2015. "Benders Decomposition for Production Routing Under Demand Uncertainty," Operations Research, INFORMS, vol. 63(4), pages 851-867, August.
    26. Tarim, S. Armagan & Dogru, Mustafa K. & Özen, Ulas & Rossi, Roberto, 2011. "An efficient computational method for a stochastic dynamic lot-sizing problem under service-level constraints," European Journal of Operational Research, Elsevier, vol. 215(3), pages 563-571, December.
    27. Anantaram Balakrishnan & Joseph Geunes, 2000. "Requirements Planning with Substitutions: Exploiting Bill-of-Materials Flexibility in Production Planning," Manufacturing & Service Operations Management, INFORMS, vol. 2(2), pages 166-185, January.
    28. Tarim, S. Armagan & Kingsman, Brian G., 2006. "Modelling and computing (Rn, Sn) policies for inventory systems with non-stationary stochastic demand," European Journal of Operational Research, Elsevier, vol. 174(1), pages 581-599, October.
    29. Karimi, B. & Fatemi Ghomi, S. M. T. & Wilson, J. M., 2003. "The capacitated lot sizing problem: a review of models and algorithms," Omega, Elsevier, vol. 31(5), pages 365-378, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sereshti, Narges & Adulyasak, Yossiri & Jans, Raf, 2024. "Managing flexibility in stochastic multi-level lot sizing problem with service level constraints," Omega, Elsevier, vol. 122(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gruson, Matthieu & Cordeau, Jean-François & Jans, Raf, 2021. "Benders decomposition for a stochastic three-level lot sizing and replenishment problem with a distribution structure," European Journal of Operational Research, Elsevier, vol. 291(1), pages 206-217.
    2. Brahimi, Nadjib & Absi, Nabil & Dauzère-Pérès, Stéphane & Nordli, Atle, 2017. "Single-item dynamic lot-sizing problems: An updated survey," European Journal of Operational Research, Elsevier, vol. 263(3), pages 838-863.
    3. Sereshti, Narges & Adulyasak, Yossiri & Jans, Raf, 2024. "Managing flexibility in stochastic multi-level lot sizing problem with service level constraints," Omega, Elsevier, vol. 122(C).
    4. Alvarez, Aldair & Cordeau, Jean-François & Jans, Raf & Munari, Pedro & Morabito, Reinaldo, 2021. "Inventory routing under stochastic supply and demand," Omega, Elsevier, vol. 102(C).
    5. Wei Zhang & Kai Wang & Alexandre Jacquillat & Shuaian Wang, 2023. "Optimized Scenario Reduction: Solving Large-Scale Stochastic Programs with Quality Guarantees," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 886-908, July.
    6. Dural-Selcuk, Gozdem & Rossi, Roberto & Kilic, Onur A. & Tarim, S. Armagan, 2020. "The benefit of receding horizon control: Near-optimal policies for stochastic inventory control," Omega, Elsevier, vol. 97(C).
    7. Ma, Xiyuan & Rossi, Roberto & Archibald, Thomas Welsh, 2022. "Approximations for non-stationary stochastic lot-sizing under (s,Q)-type policy," European Journal of Operational Research, Elsevier, vol. 298(2), pages 573-584.
    8. Rossi, Roberto & Kilic, Onur A. & Tarim, S. Armagan, 2015. "Piecewise linear approximations for the static–dynamic uncertainty strategy in stochastic lot-sizing," Omega, Elsevier, vol. 50(C), pages 126-140.
    9. Metzker Soares, Paula & Thevenin, Simon & Adulyasak, Yossiri & Dolgui, Alexandre, 2024. "Adaptive robust optimization for lot-sizing under yield uncertainty," European Journal of Operational Research, Elsevier, vol. 313(2), pages 513-526.
    10. Nathan Sudermann‐Merx & Steffen Rebennack & Christian Timpe, 2021. "Crossing Minimal Edge‐Constrained Layout Planning using Benders Decomposition," Production and Operations Management, Production and Operations Management Society, vol. 30(10), pages 3429-3447, October.
    11. Poudel, Sushil Raj & Marufuzzaman, Mohammad & Bian, Linkan, 2016. "A hybrid decomposition algorithm for designing a multi-modal transportation network under biomass supply uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 94(C), pages 1-25.
    12. Tunc, Huseyin & Kilic, Onur A. & Tarim, S. Armagan & Eksioglu, Burak, 2013. "A simple approach for assessing the cost of system nervousness," International Journal of Production Economics, Elsevier, vol. 141(2), pages 619-625.
    13. Lee, Jinkyu & Bae, Sanghyeon & Kim, Woo Chang & Lee, Yongjae, 2023. "Value function gradient learning for large-scale multistage stochastic programming problems," European Journal of Operational Research, Elsevier, vol. 308(1), pages 321-335.
    14. Gurkan, M. Edib & Tunc, Huseyin & Tarim, S. Armagan, 2022. "The joint stochastic lot sizing and pricing problem," Omega, Elsevier, vol. 108(C).
    15. Ragheb Rahmaniani & Shabbir Ahmed & Teodor Gabriel Crainic & Michel Gendreau & Walter Rei, 2020. "The Benders Dual Decomposition Method," Operations Research, INFORMS, vol. 68(3), pages 878-895, May.
    16. Sereshti, Narges & Adulyasak, Yossiri & Jans, Raf, 2021. "The value of aggregate service levels in stochastic lot sizing problems," Omega, Elsevier, vol. 102(C).
    17. Shin, Hojung & Park, Soohoon & Lee, Euncheol & Benton, W.C., 2015. "A classification of the literature on the planning of substitutable products," European Journal of Operational Research, Elsevier, vol. 246(3), pages 686-699.
    18. Huseyin Tunc & Onur A. Kilic & S. Armagan Tarim & Roberto Rossi, 2018. "An Extended Mixed-Integer Programming Formulation and Dynamic Cut Generation Approach for the Stochastic Lot-Sizing Problem," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 492-506, August.
    19. Azaron, Amir & Tang, Ou & Tavakkoli-Moghaddam, Reza, 2009. "Dynamic lot sizing problem with continuous-time Markovian production cost," International Journal of Production Economics, Elsevier, vol. 120(2), pages 607-612, August.
    20. Taş, Duygu & Gendreau, Michel & Jabali, Ola & Jans, Raf, 2019. "A capacitated lot sizing problem with stochastic setup times and overtime," European Journal of Operational Research, Elsevier, vol. 273(1), pages 146-159.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:34:y:2022:i:6:p:3151-3169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.