Outcome regression-based estimation of conditional average treatment effect
Author
Abstract
Suggested Citation
DOI: 10.1007/s10463-022-00821-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Pagan,Adrian & Ullah,Aman, 1999.
"Nonparametric Econometrics,"
Cambridge Books,
Cambridge University Press, number 9780521355643, January.
- Pagan,Adrian & Ullah,Aman, 1999. "Nonparametric Econometrics," Cambridge Books, Cambridge University Press, number 9780521586115, January.
- Yanyuan Ma & Liping Zhu, 2012. "A Semiparametric Approach to Dimension Reduction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 168-179, March.
- Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003.
"Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score,"
Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
- Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2000. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," NBER Technical Working Papers 0251, National Bureau of Economic Research, Inc.
- Guido Imbens, 2000. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometric Society World Congress 2000 Contributed Papers 1166, Econometric Society.
- Yingcun Xia & Howell Tong & W. K. Li & Li‐Xing Zhu, 2002. "An adaptive estimation of dimension reduction space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 363-410, August.
- Wang Q. & Linton O. & Hardle W., 2004.
"Semiparametric Regression Analysis With Missing Response at Random,"
Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
- Wolfgang Härdle & Oliver Linton & Wang, Qihua, 2003. "Semiparametric regression analysis with missing response at random," CeMMAP working papers CWP11/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Wei Luo & Yeying Zhu & Debashis Ghosh, 2017. "On estimating regression-based causal effects using sufficient dimension reduction," Biometrika, Biometrika Trust, vol. 104(1), pages 51-65.
- Ying Zhang & Jun Shao & Menggang Yu & Lei Wang, 2018. "Impact of sufficient dimension reduction in nonparametric estimation of causal effect," Statistical Theory and Related Fields, Taylor & Francis Journals, vol. 2(1), pages 89-95, January.
- Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
- repec:wyi:journl:002176 is not listed on IDEAS
- Jason Abrevaya & Yu-Chin Hsu & Robert P. Lieli, 2015.
"Estimating Conditional Average Treatment Effects,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 485-505, October.
- Jason Abrevaya & Yu-Chin Hsu & Robert P. Lieli, 2012. "Estimating Conditional Average Treatment Effects," CEU Working Papers 2012_16, Department of Economics, Central European University, revised 20 Jul 2012.
- Zhenghui Feng & Xuerong Meggie Wen & Zhou Yu & Lixing Zhu, 2013. "On Partial Sufficient Dimension Reduction With Applications to Partially Linear Multi-Index Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 237-246, March.
- Li, Bing & Wang, Shaoli, 2007. "On Directional Regression for Dimension Reduction," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 997-1008, September.
- Michael Healy & Michael Westmacott, 1956. "Missing Values in Experiments Analysed on Automatic Computers," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 5(3), pages 203-206, November.
- Seung Jun Shin & Yichao Wu & Hao Helen Zhang & Yufeng Liu, 2017. "Principal weighted support vector machines for sufficient dimension reduction in binary classification," Biometrika, Biometrika Trust, vol. 104(1), pages 67-81.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Michael Lechner & Jana Mareckova, 2024. "Comprehensive Causal Machine Learning," Papers 2405.10198, arXiv.org.
- Ballinari, Daniele, 2024.
"Calibrating doubly-robust estimators with unbalanced treatment assignment,"
Economics Letters, Elsevier, vol. 241(C).
- Daniele Ballinari, 2024. "Calibrating doubly-robust estimators with unbalanced treatment assignment," Papers 2403.01585, arXiv.org, revised Jun 2024.
- Nan Liu & Yanbo Liu & Yuya Sasaki, 2024. "Estimation and Inference for Causal Functions with Multiway Clustered Data," Papers 2409.06654, arXiv.org.
- Kazuhiko Shinoda & Takahiro Hoshino, 2022. "Orthogonal Series Estimation for the Ratio of Conditional Expectation Functions," Papers 2212.13145, arXiv.org.
- Adam Baybutt & Manu Navjeevan, 2023. "Doubly-Robust Inference for Conditional Average Treatment Effects with High-Dimensional Controls," Papers 2301.06283, arXiv.org.
- Julius Owusu, 2024. "A Nonparametric Test of Heterogeneous Treatment Effects under Interference," Papers 2410.00733, arXiv.org.
- Lucas Zhang, 2024. "Continuous difference-in-differences with double/debiased machine learning," Papers 2408.10509, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Qihua & Su, Miaomiao & Wang, Ruoyu, 2021. "A beyond multiple robust approach for missing response problem," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
- Lu Li & Kai Tan & Xuerong Meggie Wen & Zhou Yu, 2023. "Variable-dependent partial dimension reduction," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 521-541, June.
- Jianxuan Liu & Yanyuan Ma & Lan Wang, 2018. "An alternative robust estimator of average treatment effect in causal inference," Biometrics, The International Biometric Society, vol. 74(3), pages 910-923, September.
- Feng, Sanying & Kong, Kaidi & Kong, Yinfei & Li, Gaorong & Wang, Zhaoliang, 2022. "Statistical inference of heterogeneous treatment effect based on single-index model," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).
- Wei Luo, 2022. "On efficient dimension reduction with respect to the interaction between two response variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 269-294, April.
- Qin Wang & Yuan Xue, 2023. "A structured covariance ensemble for sufficient dimension reduction," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 777-800, September.
- Ming-Yueh Huang & Kwun Chuen Gary Chan, 2017. "Joint sufficient dimension reduction and estimation of conditional and average treatment effects," Biometrika, Biometrika Trust, vol. 104(3), pages 583-596.
- Halbert White & Karim Chalak, 2013. "Identification and Identification Failure for Treatment Effects Using Structural Systems," Econometric Reviews, Taylor & Francis Journals, vol. 32(3), pages 273-317, November.
- Guido W. Imbens & Jeffrey M. Wooldridge, 2009.
"Recent Developments in the Econometrics of Program Evaluation,"
Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
- Guido M. Imbens & Jeffrey M. Wooldridge, 2008. "Recent Developments in the Econometrics of Program Evaluation," NBER Working Papers 14251, National Bureau of Economic Research, Inc.
- Wooldridge, Jeffrey M. & Imbens, Guido, 2009. "Recent Developments in the Econometrics of Program Evaluation," Scholarly Articles 3043416, Harvard University Department of Economics.
- Guido Imbens & Jeffrey M. Wooldridge, 2008. "Recent developments in the econometrics of program evaluation," CeMMAP working papers CWP24/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Imbens, Guido W. & Wooldridge, Jeffrey M., 2008. "Recent Developments in the Econometrics of Program Evaluation," IZA Discussion Papers 3640, Institute of Labor Economics (IZA).
- John DiNardo & David S. Lee, 2010. "Program Evaluation and Research Designs," Working Papers 1228, Princeton University, Department of Economics, Industrial Relations Section..
- Marco Caliendo & Sabine Kopeinig, 2008.
"Some Practical Guidance For The Implementation Of Propensity Score Matching,"
Journal of Economic Surveys, Wiley Blackwell, vol. 22(1), pages 31-72, February.
- Marco Caliendo & Sabine Kopeinig, 2005. "Some Practical Guidance for the Implementation of Propensity Score Matching," Discussion Papers of DIW Berlin 485, DIW Berlin, German Institute for Economic Research.
- Caliendo, Marco & Kopeinig, Sabine, 2005. "Some Practical Guidance for the Implementation of Propensity Score Matching," IZA Discussion Papers 1588, Institute of Labor Economics (IZA).
- Hu, Yingyao, 2017. "The Econometrics of Unobservables -- Latent Variable and Measurement Error Models and Their Applications in Empirical Industrial Organization and Labor Economics [The Econometrics of Unobservables]," Economics Working Paper Archive 64578, The Johns Hopkins University,Department of Economics, revised 2021.
- Sheng, Wenhui & Yin, Xiangrong, 2013. "Direction estimation in single-index models via distance covariance," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 148-161.
- Wei Huang & Oliver Linton & Zheng Zhang, 2021.
"A Unified Framework for Specification Tests of Continuous Treatment Effect Models,"
Papers
2102.08063, arXiv.org, revised Sep 2021.
- Huang, W. & Linton, O. & Zhang, Z., 2021. "A Unified Framework for Specification Tests of Continuous Treatment Effect Models," Cambridge Working Papers in Economics 2113, Faculty of Economics, University of Cambridge.
- Ming-Yueh Huang & Chin-Tsang Chiang, 2017. "An Effective Semiparametric Estimation Approach for the Sufficient Dimension Reduction Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1296-1310, July.
- Flores, Carlos A. & Flores-Lagunes, Alfonso, 2009. "Identification and Estimation of Causal Mechanisms and Net Effects of a Treatment under Unconfoundedness," IZA Discussion Papers 4237, Institute of Labor Economics (IZA).
- Rahul Singh & Liyuan Xu & Arthur Gretton, 2020. "Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves," Papers 2010.04855, arXiv.org, revised Oct 2022.
- Difang Huang & Jiti Gao & Tatsushi Oka, 2022.
"Semiparametric Single-Index Estimation for Average Treatment Effects,"
Papers
2206.08503, arXiv.org, revised Apr 2024.
- Difang Huang & Jiti Gao & Tatsushi Oka, 2022. "Semiparametric Single-Index Estimation for Average Treatment Effects," Monash Econometrics and Business Statistics Working Papers 10/22, Monash University, Department of Econometrics and Business Statistics.
- DiNardo, John & Lee, David S., 2011.
"Program Evaluation and Research Designs,"
Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 5, pages 463-536,
Elsevier.
- John DiNardo & David S. Lee, 2010. "Program Evaluation and Research Designs," Working Papers 1228, Princeton University, Department of Economics, Industrial Relations Section..
- John DiNardo & David S. Lee, 2010. "Program Evaluation and Research Designs," NBER Working Papers 16016, National Bureau of Economic Research, Inc.
- Ash Abebe & Huybrechts F. Bindele & Masego Otlaadisa & Boikanyo Makubate, 2021. "Robust estimation of single index models with responses missing at random," Statistical Papers, Springer, vol. 62(5), pages 2195-2225, October.
More about this item
Keywords
Asymptotic variance; Conditional average treatment effect; Regression causal effect; Sufficient dimension reduction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:74:y:2022:i:5:d:10.1007_s10463-022-00821-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.