IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v108y2013i501p237-246.html
   My bibliography  Save this article

On Partial Sufficient Dimension Reduction With Applications to Partially Linear Multi-Index Models

Author

Listed:
  • Zhenghui Feng
  • Xuerong Meggie Wen
  • Zhou Yu
  • Lixing Zhu

Abstract

Partial dimension reduction is a general method to seek informative convex combinations of predictors of primary interest, which includes dimension reduction as its special case when the predictors in the remaining part are constants. In this article, we propose a novel method to conduct partial dimension reduction estimation for predictors of primary interest without assuming that the remaining predictors are categorical. To this end, we first take the dichotomization step such that any existing approach for partial dimension reduction estimation can be employed. Then we take the expectation step to integrate over all the dichotomic predictors to identify the partial central subspace. As an example, we use the partially linear multi-index model to illustrate its applications for semiparametric modeling. Simulations and real data examples are given to illustrate our methodology.

Suggested Citation

  • Zhenghui Feng & Xuerong Meggie Wen & Zhou Yu & Lixing Zhu, 2013. "On Partial Sufficient Dimension Reduction With Applications to Partially Linear Multi-Index Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 237-246, March.
  • Handle: RePEc:taf:jnlasa:v:108:y:2013:i:501:p:237-246
    DOI: 10.1080/01621459.2012.746065
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2012.746065
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2012.746065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Lexin & Li, Bing & Zhu, Li-Xing, 2010. "Groupwise Dimension Reduction," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1188-1201.
    2. Zhu, Lixing & Miao, Baiqi & Peng, Heng, 2006. "On Sliced Inverse Regression With High-Dimensional Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 630-643, June.
    3. Li, Bing & Wang, Shaoli, 2007. "On Directional Regression for Dimension Reduction," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 997-1008, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lu Li & Kai Tan & Xuerong Meggie Wen & Zhou Yu, 2023. "Variable-dependent partial dimension reduction," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 521-541, June.
    2. Jun Zhang & Zhenghui Feng & Xiaoguang Wang, 2018. "A constructive hypothesis test for the single-index models with two groups," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(5), pages 1077-1114, October.
    3. Zeng, Bilin & Yu, Zhou & Wen, Xuerong Meggie, 2015. "A note on cumulative mean estimation," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 322-327.
    4. Xiaobing Zhao & Xian Zhou, 2020. "Partial sufficient dimension reduction on additive rates model for recurrent event data with high-dimensional covariates," Statistical Papers, Springer, vol. 61(2), pages 523-541, April.
    5. Ming-Yueh Huang & Kwun Chuen Gary Chan, 2022. "Model selection among Dimension-Reduced generalized Cox models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(3), pages 492-511, July.
    6. Ke, Chenlu & Yang, Wei & Yuan, Qingcong & Li, Lu, 2023. "Partial sufficient variable screening with categorical controls," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    7. Hilafu, Haileab & Wu, Wenbo, 2017. "Partial projective resampling method for dimension reduction: With applications to partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 1-14.
    8. Lu Li & Niwen Zhou & Lixing Zhu, 2022. "Outcome regression-based estimation of conditional average treatment effect," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(5), pages 987-1041, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaobing Zhao & Xian Zhou, 2020. "Partial sufficient dimension reduction on additive rates model for recurrent event data with high-dimensional covariates," Statistical Papers, Springer, vol. 61(2), pages 523-541, April.
    2. Zifang Guo & Lexin Li & Wenbin Lu & Bing Li, 2015. "Groupwise Dimension Reduction via Envelope Method," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1515-1527, December.
    3. Scrucca, Luca, 2011. "Model-based SIR for dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 3010-3026, November.
    4. repec:wyi:journl:002176 is not listed on IDEAS
    5. Feng, Zhenghui & Zhu, Lixing, 2012. "An alternating determination–optimization approach for an additive multi-index model," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1981-1993.
    6. Ming-Yueh Huang & Chin-Tsang Chiang, 2017. "An Effective Semiparametric Estimation Approach for the Sufficient Dimension Reduction Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1296-1310, July.
    7. Zhenghui Feng & Lu Lin & Ruoqing Zhu & Lixing Zhu, 2020. "Nonparametric variable selection and its application to additive models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 827-854, June.
    8. Wang, Qin & Xue, Yuan, 2021. "An ensemble of inverse moment estimators for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    9. Fang, Fang & Yu, Zhou, 2020. "Model averaging assisted sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    10. Hilafu, Haileab & Yin, Xiangrong, 2013. "Sufficient dimension reduction in multivariate regressions with categorical predictors," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 139-147.
    11. Pircalabelu, Eugen & Artemiou, Andreas, 2021. "Graph informed sliced inverse regression," Computational Statistics & Data Analysis, Elsevier, vol. 164(C).
    12. Dong, Yuexiao & Yu, Zhou & Zhu, Liping, 2015. "Robust inverse regression for dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 71-81.
    13. Zhou, Jingke & Xu, Wangli & Zhu, Lixing, 2015. "Robust estimating equation-based sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 99-118.
    14. Zhang, Xin & Wang, Chong & Wu, Yichao, 2018. "Functional envelope for model-free sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 37-50.
    15. Deng, Jianqiu & Yang, Xiaojie & Wang, Qihua, 2022. "Surrogate space based dimension reduction for nonignorable nonresponse," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    16. Xie, Chuanlong & Zhu, Lixing, 2019. "A goodness-of-fit test for variable-adjusted models," Computational Statistics & Data Analysis, Elsevier, vol. 138(C), pages 27-48.
    17. Seung Jun Shin & Yichao Wu & Hao Helen Zhang & Yufeng Liu, 2014. "Probability-enhanced sufficient dimension reduction for binary classification," Biometrics, The International Biometric Society, vol. 70(3), pages 546-555, September.
    18. Takuma Yoshida, 2017. "Nonlinear surface regression with dimension reduction method," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(1), pages 29-50, January.
    19. Shih‐Hao Huang & Kerby Shedden & Hsin‐wen Chang, 2023. "Inference for the dimension of a regression relationship using pseudo‐covariates," Biometrics, The International Biometric Society, vol. 79(3), pages 2394-2403, September.
    20. Wei Luo, 2022. "On efficient dimension reduction with respect to the interaction between two response variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 269-294, April.
    21. Zeng, Bilin & Yu, Zhou & Wen, Xuerong Meggie, 2015. "A note on cumulative mean estimation," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 322-327.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:108:y:2013:i:501:p:237-246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.