IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2501.06969.html
   My bibliography  Save this paper

Doubly Robust Inference on Causal Derivative Effects for Continuous Treatments

Author

Listed:
  • Yikun Zhang
  • Yen-Chi Chen

Abstract

Statistical methods for causal inference with continuous treatments mainly focus on estimating the mean potential outcome function, commonly known as the dose-response curve. However, it is often not the dose-response curve but its derivative function that signals the treatment effect. In this paper, we investigate nonparametric inference on the derivative of the dose-response curve with and without the positivity condition. Under the positivity and other regularity conditions, we propose a doubly robust (DR) inference method for estimating the derivative of the dose-response curve using kernel smoothing. When the positivity condition is violated, we demonstrate the inconsistency of conventional inverse probability weighting (IPW) and DR estimators, and introduce novel bias-corrected IPW and DR estimators. In all settings, our DR estimator achieves asymptotic normality at the standard nonparametric rate of convergence. Additionally, our approach reveals an interesting connection to nonparametric support and level set estimation problems. Finally, we demonstrate the applicability of our proposed estimators through simulations and a case study of evaluating a job training program.

Suggested Citation

  • Yikun Zhang & Yen-Chi Chen, 2025. "Doubly Robust Inference on Causal Derivative Effects for Continuous Treatments," Papers 2501.06969, arXiv.org.
  • Handle: RePEc:arx:papers:2501.06969
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2501.06969
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sebastian Calonico & Matias D. Cattaneo & Max H. Farrell, 2018. "On the Effect of Bias Estimation on Coverage Accuracy in Nonparametric Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 767-779, April.
    2. Max H. Farrell & Tengyuan Liang & Sanjog Misra, 2021. "Deep Neural Networks for Estimation and Inference," Econometrica, Econometric Society, vol. 89(1), pages 181-213, January.
    3. Hidehiko Ichimura & Whitney K. Newey, 2022. "The influence function of semiparametric estimators," Quantitative Economics, Econometric Society, vol. 13(1), pages 29-61, January.
    4. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    5. Kosuke Imai & David A. van Dyk, 2004. "Causal Inference With General Treatment Regimes: Generalizing the Propensity Score," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 854-866, January.
    6. Martin Huber & Yu‐Chin Hsu & Ying‐Ying Lee & Layal Lettry, 2020. "Direct and indirect effects of continuous treatments based on generalized propensity score weighting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(7), pages 814-840, November.
    7. Martin Huber, 2014. "Identifying Causal Mechanisms (Primarily) Based On Inverse Probability Weighting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(6), pages 920-943, September.
    8. Ying-Ying Lee, 2018. "Partial Mean Processes with Generated Regressors: Continuous Treatment Effects and Nonseparable Models," Papers 1811.00157, arXiv.org.
    9. Qingliang Fan & Yu-Chin Hsu & Robert P. Lieli & Yichong Zhang, 2022. "Estimation of Conditional Average Treatment Effects With High-Dimensional Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 313-327, January.
    10. Iván Díaz & Nima S. Hejazi, 2020. "Causal mediation analysis for stochastic interventions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 661-683, July.
    11. David A. Hirshberg & Stefan Wager, 2020. "Debiased Inference of Average Partial Effects in Single-Index Models: Comment on Wooldridge and Zhu," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(1), pages 19-24, January.
    12. Newey, Whitney K & Stoker, Thomas M, 1993. "Efficiency of Weighted Average Derivative Estimators and Index Models," Econometrica, Econometric Society, vol. 61(5), pages 1199-1223, September.
    13. Xiao Wu & Fabrizia Mealli & Marianthi-Anna Kioumourtzoglou & Francesca Dominici & Danielle Braun, 2024. "Matching on Generalized Propensity Scores with Continuous Exposures," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 119(545), pages 757-772, January.
    14. Su, Liangjun & Ura, Takuya & Zhang, Yichong, 2019. "Non-separable models with high-dimensional data," Journal of Econometrics, Elsevier, vol. 212(2), pages 646-677.
    15. Chen, Xiaohong & Liao, Zhipeng & Sun, Yixiao, 2014. "Sieve inference on possibly misspecified semi-nonparametric time series models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 639-658.
    16. Marco Carone & Alexander R. Luedtke & Mark J. van der Laan, 2019. "Toward Computerized Efficient Estimation in Infinite-Dimensional Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1174-1190, July.
    17. Antonio F. Galvao & Liang Wang, 2015. "Uniformly Semiparametric Efficient Estimation of Treatment Effects With a Continuous Treatment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1528-1542, December.
    18. Carlos A. Flores & Alfonso Flores-Lagunes & Arturo Gonzalez & Todd C. Neumann, 2012. "Estimating the Effects of Length of Exposure to Instruction in a Training Program: The Case of Job Corps," The Review of Economics and Statistics, MIT Press, vol. 94(1), pages 153-171, February.
    19. Peter Z. Schochet & John Burghardt & Sheena McConnell, 2008. "Does Job Corps Work? Impact Findings from the National Job Corps Study," American Economic Review, American Economic Association, vol. 98(5), pages 1864-1886, December.
    20. repec:mpr:mprres:6097 is not listed on IDEAS
    21. Cadre, BenoI^t, 2006. "Kernel estimation of density level sets," Journal of Multivariate Analysis, Elsevier, vol. 97(4), pages 999-1023, April.
    22. Cattaneo, Matias D. & Crump, Richard K. & Jansson, Michael, 2010. "Robust Data-Driven Inference for Density-Weighted Average Derivatives," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1070-1083.
    23. Sylvia Klosin, 2021. "Automatic Double Machine Learning for Continuous Treatment Effects," Papers 2104.10334, arXiv.org.
    24. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    25. Victor Chernozhukov & Whitney K. Newey & Rahul Singh, 2022. "Automatic Debiased Machine Learning of Causal and Structural Effects," Econometrica, Econometric Society, vol. 90(3), pages 967-1027, May.
    26. Lu Li & Niwen Zhou & Lixing Zhu, 2022. "Outcome regression-based estimation of conditional average treatment effect," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(5), pages 987-1041, October.
    27. Edward H. Kennedy & Zongming Ma & Matthew D. McHugh & Dylan S. Small, 2017. "Non-parametric methods for doubly robust estimation of continuous treatment effects," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1229-1245, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Kyle Colangelo & Ying-Ying Lee, 2020. "Double Debiased Machine Learning Nonparametric Inference with Continuous Treatments," Papers 2004.03036, arXiv.org, revised Sep 2023.
    3. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Yuya Sasaki & Takuya Ura & Yichong Zhang, 2022. "Unconditional quantile regression with high‐dimensional data," Quantitative Economics, Econometric Society, vol. 13(3), pages 955-978, July.
    5. Martin Huber & Yu‐Chin Hsu & Ying‐Ying Lee & Layal Lettry, 2020. "Direct and indirect effects of continuous treatments based on generalized propensity score weighting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(7), pages 814-840, November.
    6. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    7. Ying-Ying Lee & Chu-An Liu, 2024. "Lee Bounds with a Continuous Treatment in Sample Selection," Papers 2411.04312, arXiv.org, revised Feb 2025.
    8. Yu-Chin Hsu & Martin Huber & Ying-Ying Lee & Chu-An Liu, 2021. "Testing Monotonicity of Mean Potential Outcomes in a Continuous Treatment with High-Dimensional Data," Papers 2106.04237, arXiv.org, revised Aug 2022.
    9. Wei Huang & Oliver Linton & Zheng Zhang, 2022. "A Unified Framework for Specification Tests of Continuous Treatment Effect Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1817-1830, October.
    10. Nan Liu & Yanbo Liu & Yuya Sasaki, 2024. "Estimation and Inference for Causal Functions with Multiway Clustered Data," Papers 2409.06654, arXiv.org.
    11. Phillip Heiler & Michael C. Knaus, 2021. "Effect or Treatment Heterogeneity? Policy Evaluation with Aggregated and Disaggregated Treatments," Papers 2110.01427, arXiv.org, revised Aug 2023.
    12. Tübbicke Stefan, 2022. "Entropy Balancing for Continuous Treatments," Journal of Econometric Methods, De Gruyter, vol. 11(1), pages 71-89, January.
    13. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    14. Chen, Jiafeng & Ritzwoller, David M., 2023. "Semiparametric estimation of long-term treatment effects," Journal of Econometrics, Elsevier, vol. 237(2).
    15. Yizhen Xu & Numair Sani & AmirEmad Ghassami & Ilya Shpitser, 2021. "Multiply Robust Causal Mediation Analysis with Continuous Treatments," Papers 2105.09254, arXiv.org, revised Oct 2024.
    16. Lucas Zhang, 2024. "Continuous difference-in-differences with double/debiased machine learning," Papers 2408.10509, arXiv.org.
    17. Liu, Lin & Mukherjee, Rajarshi & Robins, James M., 2024. "Assumption-lean falsification tests of rate double-robustness of double-machine-learning estimators," Journal of Econometrics, Elsevier, vol. 240(2).
    18. Isaac Meza & Rahul Singh, 2021. "Nested Nonparametric Instrumental Variable Regression: Long Term, Mediated, and Time Varying Treatment Effects," Papers 2112.14249, arXiv.org, revised Mar 2024.
    19. Rahul Singh & Liyuan Xu & Arthur Gretton, 2020. "Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves," Papers 2010.04855, arXiv.org, revised Oct 2022.
    20. Matias D Cattaneo & Michael Jansson & Xinwei Ma, 2019. "Two-Step Estimation and Inference with Possibly Many Included Covariates," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(3), pages 1095-1122.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2501.06969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.