A Nonparametric Test of Heterogeneous Treatment Effects under Interference
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Charles F. Manski, 2013.
"Identification of treatment response with social interactions,"
Econometrics Journal, Royal Economic Society, vol. 16(1), pages 1-23, February.
- Charles F. Manski, 2010. "Identification of treatment response with social interactions," CeMMAP working papers CWP01/10, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Peng Ding & Avi Feller & Luke Miratrix, 2016. "Randomization inference for treatment effect variation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(3), pages 655-671, June.
- Stefan Wager & Susan Athey, 2018.
"Estimation and Inference of Heterogeneous Treatment Effects using Random Forests,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
- Wager, Stefan & Athey, Susan, 2017. "Estimation and Inference of Heterogeneous Treatment Effects Using Random Forests," Research Papers 3576, Stanford University, Graduate School of Business.
- Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2008.
"Nonparametric Tests for Treatment Effect Heterogeneity,"
The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 389-405, August.
- Crump, Richard K. & Hotz, V. Joseph & Imbens, Guido W. & Mitnik, Oscar A., 2006. "Nonparametric Tests for Treatment Effect Heterogeneity," IZA Discussion Papers 2091, Institute of Labor Economics (IZA).
- Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2006. "Nonparametric Tests for Treatment Effect Heterogeneity," Working Papers 0609, University of Miami, Department of Economics.
- Mitnik, Oscar K. & Imbens, Guido & Hotz, V. Joseph & Crump, Richard K., 2008. "Nonparametric Tests for Treatment Effect Heterogeneity," Scholarly Articles 3039049, Harvard University Department of Economics.
- Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2006. "Nonparametric Tests for Treatment Effect Heterogeneity," NBER Technical Working Papers 0324, National Bureau of Economic Research, Inc.
- Minsu Chang & Sokbae Lee & Yoon‐Jae Whang, 2015. "Nonparametric tests of conditional treatment effects with an application to single‐sex schooling on academic achievements," Econometrics Journal, Royal Economic Society, vol. 18(3), pages 307-346, October.
- Sobel, Michael E., 2006. "What Do Randomized Studies of Housing Mobility Demonstrate?: Causal Inference in the Face of Interference," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1398-1407, December.
- Qingliang Fan & Yu-Chin Hsu & Robert P. Lieli & Yichong Zhang, 2022.
"Estimation of Conditional Average Treatment Effects With High-Dimensional Data,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 313-327, January.
- Qingliang Fan & Yu-Chin Hsu & Robert P. Lieli & Yichong Zhang, 2019. "Estimation of Conditional Average Treatment Effects with High-Dimensional Data," Papers 1908.02399, arXiv.org, revised Jul 2021.
- Jason Abrevaya & Yu-Chin Hsu & Robert P. Lieli, 2015.
"Estimating Conditional Average Treatment Effects,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 485-505, October.
- Jason Abrevaya & Yu-Chin Hsu & Robert P. Lieli, 2012. "Estimating Conditional Average Treatment Effects," CEU Working Papers 2012_16, Department of Economics, Central European University, revised 20 Jul 2012.
- Lee, Sokbae & Song, Kyungchul & Whang, Yoon-Jae, 2013.
"Testing functional inequalities,"
Journal of Econometrics, Elsevier, vol. 172(1), pages 14-32.
- Sokbae (Simon) Lee & Kyungchui (Kevin) Song & Yoon-Jae Whang, 2011. "Testing functional inequalities," CeMMAP working papers CWP12/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Davidson, Russell & MacKinnon, James G., 1999.
"The Size Distortion Of Bootstrap Tests,"
Econometric Theory, Cambridge University Press, vol. 15(3), pages 361-376, June.
- Davidson, R. & Mackinnon, J.G., 1996. "The Size Distorsion of Bootstrap Tests," G.R.E.Q.A.M. 96a15, Universite Aix-Marseille III.
- Davidson, Russell & MacKinnon, James G., 1996. "The Size Distortion of Bootstrap Tests," Queen's Institute for Economic Research Discussion Papers 273347, Queen's University - Department of Economics.
- Soohyung Lee & Azeem M. Shaikh, 2014. "Multiple Testing And Heterogeneous Treatment Effects: Re‐Evaluating The Effect Of Progresa On School Enrollment," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(4), pages 612-626, June.
- Jing Cai & Alain De Janvry & Elisabeth Sadoulet, 2015.
"Social Networks and the Decision to Insure,"
American Economic Journal: Applied Economics, American Economic Association, vol. 7(2), pages 81-108, April.
- Cai, Jing & de Janvry, Alain & Sadoulet, Elisabeth, 2013. "Social Networks and the Decision to Insure," MPRA Paper 46861, University Library of Munich, Germany.
- Racine, Jeff, 1997. "Consistent Significance Testing for Nonparametric Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(3), pages 369-378, July.
- Seungjin Han & Julius Owusu & Youngki Shin, 2022. "Statistical Treatment Rules under Social Interaction," Papers 2209.09077, arXiv.org, revised Nov 2022.
- Li, Qi & Maasoumi, Esfandiar & Racine, Jeffrey S., 2009. "A nonparametric test for equality of distributions with mixed categorical and continuous data," Journal of Econometrics, Elsevier, vol. 148(2), pages 186-200, February.
- Julius Owusu, 2023. "Randomization Inference of Heterogeneous Treatment Effects under Network Interference," Papers 2308.00202, arXiv.org, revised Jan 2025.
- Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, November.
- Lu Li & Niwen Zhou & Lixing Zhu, 2022. "Outcome regression-based estimation of conditional average treatment effect," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(5), pages 987-1041, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Julius Owusu, 2023. "Randomization Inference of Heterogeneous Treatment Effects under Network Interference," Papers 2308.00202, arXiv.org, revised Jan 2025.
- Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
- Zhou, Niwen & Guo, Xu & Zhu, Lixing, 2024. "Significance test for semiparametric conditional average treatment effects and other structural functions," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
- Denis Fougère & Nicolas Jacquemet, 2020.
"Policy Evaluation Using Causal Inference Methods,"
Working Papers
hal-03455978, HAL.
- Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03455978, HAL.
- Denis Fougère & Nicolas Jacquemet, 2021. "Policy Evaluation Using Causal Inference Methods," SciencePo Working papers Main hal-03098058, HAL.
- Fougère, Denis & Jacquemet, Nicolas, 2020. "Policy Evaluation Using Causal Inference Methods," IZA Discussion Papers 12922, Institute of Labor Economics (IZA).
- Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," SciencePo Working papers Main hal-03455978, HAL.
- Denis Fougère & Nicolas Jacquemet, 2021. "Policy Evaluation Using Causal Inference Methods," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-03098058, HAL.
- Denis Fougère & Nicolas Jacquemet, 2021. "Policy Evaluation Using Causal Inference Methods," PSE-Ecole d'économie de Paris (Postprint) hal-03098058, HAL.
- Denis Fougère & Nicolas Jacquemet, 2021. "Policy Evaluation Using Causal Inference Methods," Post-Print hal-03098058, HAL.
- Arthur Charpentier & Emmanuel Flachaire & Ewen Gallic, 2023.
"Optimal Transport for Counterfactual Estimation: A Method for Causal Inference,"
Papers
2301.07755, arXiv.org.
- Arthur Charpentier & Emmanuel Flachaire & Ewen Gallic, 2024. "Optimal Transport for Counterfactual Estimation: A Method for Causal Inference," Post-Print hal-04678402, HAL.
- Phillip Heiler & Michael C. Knaus, 2021.
"Effect or Treatment Heterogeneity? Policy Evaluation with Aggregated and Disaggregated Treatments,"
Papers
2110.01427, arXiv.org, revised Aug 2023.
- Heiler, Phillip & Knaus, Michael C., 2022. "Effect or Treatment Heterogeneity? Policy Evaluation with Aggregated and Disaggregated Treatments," IZA Discussion Papers 15580, Institute of Labor Economics (IZA).
- Chung, EunYi & Olivares, Mauricio, 2021. "Permutation test for heterogeneous treatment effects with a nuisance parameter," Journal of Econometrics, Elsevier, vol. 225(2), pages 148-174.
- Nathan Kallus, 2023. "Treatment Effect Risk: Bounds and Inference," Management Science, INFORMS, vol. 69(8), pages 4579-4590, August.
- Nathan Kallus, 2022. "Treatment Effect Risk: Bounds and Inference," Papers 2201.05893, arXiv.org, revised Jul 2022.
- Davide Viviano, 2020. "Experimental Design under Network Interference," Papers 2003.08421, arXiv.org, revised Jul 2022.
- Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.
- Riccardo Di Francesco, 2022. "Aggregation Trees," CEIS Research Paper 546, Tor Vergata University, CEIS, revised 20 Nov 2023.
- Gabriel Okasa & Kenneth A. Younge, 2022. "Sample Fit Reliability," Papers 2209.06631, arXiv.org.
- Riccardo Di Francesco, 2024. "Aggregation Trees," Papers 2410.11408, arXiv.org.
- Supriya Tiwari & Pallavi Basu, 2024. "Quasi-randomization tests for network interference," Papers 2403.16673, arXiv.org, revised Oct 2024.
- Wei Huang & Oliver Linton & Zheng Zhang, 2022.
"A Unified Framework for Specification Tests of Continuous Treatment Effect Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1817-1830, October.
- Wei Huang & Oliver Linton & Zheng Zhang, 2021. "A Unified Framework for Specification Tests of Continuous Treatment Effect Models," Papers 2102.08063, arXiv.org, revised Sep 2021.
- Huang, W. & Linton, O. & Zhang, Z., 2021. "A Unified Framework for Specification Tests of Continuous Treatment Effect Models," Cambridge Working Papers in Economics 2113, Faculty of Economics, University of Cambridge.
- Michael C Knaus, 2022.
"Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation],"
The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
- Knaus, Michael C., 2020. "Double Machine Learning based Program Evaluation under Unconfoundedness," Economics Working Paper Series 2004, University of St. Gallen, School of Economics and Political Science.
- Knaus, Michael C., 2020. "Double Machine Learning Based Program Evaluation under Unconfoundedness," IZA Discussion Papers 13051, Institute of Labor Economics (IZA).
- Michael C. Knaus, 2020. "Double Machine Learning based Program Evaluation under Unconfoundedness," Papers 2003.03191, arXiv.org, revised Jun 2022.
- Agboola, Oluwagbenga David & Yu, Han, 2023. "Neighborhood-based cross fitting approach to treatment effects with high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
- Michael P. Leung, 2021.
"Rate-Optimal Cluster-Randomized Designs for Spatial Interference,"
Papers
2111.04219, arXiv.org, revised Sep 2022.
- Leung, Michael P, 2022. "Rate-optimal cluster-randomized designs for spatial interference," Santa Cruz Department of Economics, Working Paper Series qt8t44s021, Department of Economics, UC Santa Cruz.
- Nan Liu & Yanbo Liu & Yuya Sasaki, 2024. "Estimation and Inference for Causal Functions with Multiway Clustered Data," Papers 2409.06654, arXiv.org.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2024-10-28 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.00733. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.