IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v62y2021i5d10.1007_s00362-020-01184-2.html
   My bibliography  Save this article

Robust estimation of single index models with responses missing at random

Author

Listed:
  • Ash Abebe

    (Auburn University)

  • Huybrechts F. Bindele

    (University of South Alabama)

  • Masego Otlaadisa

    (Botswana International University of Science and Technology (BIUST))

  • Boikanyo Makubate

    (Botswana International University of Science and Technology (BIUST))

Abstract

A single-index regression model is considered, where some responses in the model are assumed to be missing at random. Local linear rank-based estimators of the single-index direction and the unknown link function are proposed. Asymptotic properties of the estimators are established under mild regularity conditions. Monte Carlo simulation experiments show that the proposed estimators are more efficient than their least squares counterparts especially when the data are derived from contaminated or heavy-tailed model error distributions. When the errors follow a normal distribution, the least squares index direction estimator tends to be more efficient than the rank-based index direction estimator; however, the least squares link function estimator remains less efficient than the rank-based link function estimator. A real data example is analyzed and cross-validation studies show that the proposed procedure provides better prediction than the least squares method when the responses contain outliers and are missing at random.

Suggested Citation

  • Ash Abebe & Huybrechts F. Bindele & Masego Otlaadisa & Boikanyo Makubate, 2021. "Robust estimation of single index models with responses missing at random," Statistical Papers, Springer, vol. 62(5), pages 2195-2225, October.
  • Handle: RePEc:spr:stpapr:v:62:y:2021:i:5:d:10.1007_s00362-020-01184-2
    DOI: 10.1007/s00362-020-01184-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-020-01184-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-020-01184-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Majid Mojirsheibani & Timothy Reese, 2017. "Kernel regression estimation for incomplete data with applications," Statistical Papers, Springer, vol. 58(1), pages 185-209, March.
    2. Rong Jiang & Wei-Min Qian & Zhan-Gong Zhou, 2016. "Single-index composite quantile regression with heteroscedasticity and general error distributions," Statistical Papers, Springer, vol. 57(1), pages 185-203, March.
    3. Huybrechts F. Bindele & Ash Abebe & Karlene N. Meyer, 2018. "General rank-based estimation for regression single index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(5), pages 1115-1146, October.
    4. Wang, Qihua & Sun, Zhihua, 2007. "Estimation in partially linear models with missing responses at random," Journal of Multivariate Analysis, Elsevier, vol. 98(7), pages 1470-1493, August.
    5. Yingcun Xia & Howell Tong & W. K. Li & Li‐Xing Zhu, 2002. "An adaptive estimation of dimension reduction space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 363-410, August.
    6. Qihua Wang & Tao Zhang & Wolfgang Karl Härdle, 2016. "An Extended Single-index Model with Missing Response at Random," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 1140-1152, December.
    7. Kong, Efang & Xia, Yingcun, 2012. "A Single-Index Quantile Regression Model And Its Estimation," Econometric Theory, Cambridge University Press, vol. 28(4), pages 730-768, August.
    8. Hong-Xia Xu & Guo-Liang Fan & Han-Ying Liang, 2017. "Hypothesis test on response mean with inequality constraints under data missing when covariables are present," Statistical Papers, Springer, vol. 58(1), pages 53-75, March.
    9. Michael Healy & Michael Westmacott, 1956. "Missing Values in Experiments Analysed on Automatic Computers," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 5(3), pages 203-206, November.
    10. Nagler, Thomas & Czado, Claudia, 2016. "Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 69-89.
    11. B. Prakasa Rao, 2009. "Conditional independence, conditional mixing and conditional association," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(2), pages 441-460, June.
    12. Wang Q. & Linton O. & Hardle W., 2004. "Semiparametric Regression Analysis With Missing Response at Random," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
    13. Devan Mehrotra, 2004. "A cautionary note on the analysis of randomized block designs with a few missing values," Statistical Papers, Springer, vol. 45(1), pages 51-66, January.
    14. Lang Wu & Hulin Wu, 2002. "Missing time‐dependent covariates in human immunodeficiency virus dynamic models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 51(3), pages 297-318, July.
    15. Xia, Yingcun, 2006. "Asymptotic Distributions For Two Estimators Of The Single-Index Model," Econometric Theory, Cambridge University Press, vol. 22(6), pages 1112-1137, December.
    16. Wu, Tracy Z. & Yu, Keming & Yu, Yan, 2010. "Single-index quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1607-1621, August.
    17. Wang Q. & Linton O. & Hardle W., 2004. "Semiparametric Regression Analysis With Missing Response at Random," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
    18. Bindele, Huybrechts F. & Abebe, Ash, 2015. "Semi-parametric rank regression with missing responses," Journal of Multivariate Analysis, Elsevier, vol. 142(C), pages 117-132.
    19. Qiang Xia & Kejun He & Cuizhen Niu, 2017. "A Model-Adaptive Test for Parametric Single-Index Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(6), pages 981-999, November.
    20. Guo, Xu & Fang, Yun & Zhu, Xuehu & Xu, Wangli & Zhu, Lixing, 2018. "Semiparametric double robust and efficient estimation for mean functionals with response missing at random," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 325-339.
    21. Liu, Jicai & Zhang, Riquan & Zhao, Weihua & Lv, Yazhao, 2013. "A robust and efficient estimation method for single index models," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 226-238.
    22. Yu Shen & Han-Ying Liang, 2018. "Quantile regression and its empirical likelihood with missing response at random," Statistical Papers, Springer, vol. 59(2), pages 685-707, June.
    23. Hua Liang & Suojin Wang & Raymond J. Carroll, 2007. "Partially linear models with missing response variables and error-prone covariates," Biometrika, Biometrika Trust, vol. 94(1), pages 185-198.
    24. Wanrong Liu & Xuewen Lu, 2011. "Empirical likelihood for density-weighted average derivatives," Statistical Papers, Springer, vol. 52(2), pages 391-412, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Jing & Tian, Guoliang & Lu, Fang & Lu, Xuewen, 2020. "Single-index modal regression via outer product gradients," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    2. Bindele, Huybrechts F., 2018. "Covariates missing at random under signed-rank inference," Econometrics and Statistics, Elsevier, vol. 8(C), pages 78-93.
    3. M. Hristache & V. Patilea, 2017. "Conditional moment models with data missing at random," Biometrika, Biometrika Trust, vol. 104(3), pages 735-742.
    4. Xiaohui Liu & Zhizhong Wang & Xuemei Hu, 2011. "Testing heteroscedasticity in partially linear models with missing covariates," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 321-337.
    5. Majid Mojirsheibani & Timothy Reese, 2017. "Kernel regression estimation for incomplete data with applications," Statistical Papers, Springer, vol. 58(1), pages 185-209, March.
    6. Nengxiang Ling & Rui Kan & Philippe Vieu & Shuyu Meng, 2019. "Semi-functional partially linear regression model with responses missing at random," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(1), pages 39-70, January.
    7. Nengxiang Ling & Lilei Cheng & Philippe Vieu & Hui Ding, 2022. "Missing responses at random in functional single index model for time series data," Statistical Papers, Springer, vol. 63(2), pages 665-692, April.
    8. Jiang, Rong & Qian, Wei-Min & Zhou, Zhan-Gong, 2016. "Weighted composite quantile regression for single-index models," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 34-48.
    9. Yan-Ting Xiao & Fu-Xiao Li, 2020. "Estimation in partially linear varying-coefficient errors-in-variables models with missing response variables," Computational Statistics, Springer, vol. 35(4), pages 1637-1658, December.
    10. Bindele, Huybrechts F. & Abebe, Ash, 2015. "Semi-parametric rank regression with missing responses," Journal of Multivariate Analysis, Elsevier, vol. 142(C), pages 117-132.
    11. Yu Shen & Han-Ying Liang, 2018. "Quantile regression and its empirical likelihood with missing response at random," Statistical Papers, Springer, vol. 59(2), pages 685-707, June.
    12. Wangli Xu & Xu Guo & Lixing Zhu, 2012. "Goodness-of-fitting for partial linear model with missing response at random," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(1), pages 103-118.
    13. Xue, Liugen & Xue, Dong, 2011. "Empirical likelihood for semiparametric regression model with missing response data," Journal of Multivariate Analysis, Elsevier, vol. 102(4), pages 723-740, April.
    14. Bianco, Ana M. & Boente, Graciela & González-Manteiga, Wenceslao & Pérez-González, Ana, 2015. "Robust inference in partially linear models with missing responses," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 88-98.
    15. Claudio Agostinelli & Ana M. Bianco & Graciela Boente, 2020. "Robust estimation in single-index models when the errors have a unimodal density with unknown nuisance parameter," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 855-893, June.
    16. Lu Li & Niwen Zhou & Lixing Zhu, 2022. "Outcome regression-based estimation of conditional average treatment effect," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(5), pages 987-1041, October.
    17. Bucher, Axel & El Ghouch, Anouar & Van Keilegom, Ingrid, 2014. "Single-index quantile regression models for censored data," LIDAM Discussion Papers ISBA 2014001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    18. Huybrechts F. Bindele & Ash Abebe & Karlene N. Meyer, 2018. "General rank-based estimation for regression single index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(5), pages 1115-1146, October.
    19. Lu Wang & Zhongzhe Ouyang & Xihong Lin, 2024. "Doubly Robust Estimation and Semiparametric Efficiency in Generalized Partially Linear Models with Missing Outcomes," Stats, MDPI, vol. 7(3), pages 1-20, August.
    20. Shuanghua Luo & Cheng-yi Zhang, 2016. "Nonparametric $$M$$ M -type regression estimation under missing response data," Statistical Papers, Springer, vol. 57(3), pages 641-664, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:62:y:2021:i:5:d:10.1007_s00362-020-01184-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.