IDEAS home Printed from https://ideas.repec.org/a/erh/journl/v13y2021i3p71-88.html
   My bibliography  Save this article

Smooth Threshold Autoregressive models and Markov process: An application to the Lebanese GDP growth rate

Author

Listed:
  • Jean-François Verne

    (Economic Sciences and Statistics, Lebanon Saint-Joseph University of Beirut.)

Abstract

This paper analyzes the evolution of the Lebanese GDP growth rate over the period 1970-2019 by estimating two kinds of switching models: The Smooth Transition Autoregressive (STAR) model and the model of the Markov process. These models show, on the one hand, asymmetries in the evolution of GDP growth with an abrupt transition from a regime to another and, on the other hand, a high probability that the economy remains in the recession regime. Even though the duration of the expansion phase is longer than the duration of the recession phase, the Lebanese economy experiencing the greatest difficulties in moving from a recession regime to an expansion regime. In addition, such an evolution is explosive and volatile during the lower regime (recession phase) but stationary and damped in the upper regime (expansion phase). Finally, the paper shows that the STAR model, taking a logistic form, better fits the Lebanese GDP growth than the Markov model.

Suggested Citation

  • Jean-François Verne, 2021. "Smooth Threshold Autoregressive models and Markov process: An application to the Lebanese GDP growth rate," International Econometric Review (IER), Econometric Research Association, vol. 13(3), pages 71-88, September.
  • Handle: RePEc:erh:journl:v:13:y:2021:i:3:p:71-88
    as

    Download full text from publisher

    File URL: http://www.era.org.tr/makaleler/791543.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. K. S. Chan & H. Tong, 1986. "On Estimating Thresholds In Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 7(3), pages 179-190, May.
    2. Claveria, Oscar & Torra, Salvador, 2014. "Forecasting tourism demand to Catalonia: Neural networks vs. time series models," Economic Modelling, Elsevier, vol. 36(C), pages 220-228.
    3. Ferrara, L., 2008. "L’apport des indicateurs de retournement cyclique à l’analyse conjoncturelle," Bulletin de la Banque de France, Banque de France, issue 171, pages 43-51.
    4. Kim, Sungil & Kim, Heeyoung, 2016. "A new metric of absolute percentage error for intermittent demand forecasts," International Journal of Forecasting, Elsevier, vol. 32(3), pages 669-679.
    5. Andrea Saayman & Ilsé Botha, 2017. "Non-linear models for tourism demand forecasting," Tourism Economics, , vol. 23(3), pages 594-613, May.
    6. Álvaro Escribano & Oscar Jordá, 2001. "Testing nonlinearity: Decision rules for selecting between logistic and exponential STAR models," Spanish Economic Review, Springer;Spanish Economic Association, vol. 3(3), pages 193-209.
    7. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    8. Skalin, Joakim & Terasvirta, Timo, 1999. "Another Look at Swedish Business Cycles, 1861-1988," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(4), pages 359-378, July-Aug..
    9. Hoffmaister, Alexander W. & Roldos, Jorge E., 2001. "The Sources of Macroeconomic Fluctuations in Developing Countries: Brazil and Korea," Journal of Macroeconomics, Elsevier, vol. 23(2), pages 213-239, April.
    10. ODIA NDONGO, Yves Francis, 2007. "Les sources des fluctuations marcoéconomiques au Cameroun," MPRA Paper 1308, University Library of Munich, Germany.
    11. Laurent Ferrara, 2009. "Caractérisation et datation des cycles économiques en zone euro," Revue économique, Presses de Sciences-Po, vol. 60(3), pages 703-712.
    12. Jean-François VERNE, 2011. "An econometric analysis of the output gap fluctuations: The case of Lebanon," Economics Bulletin, AccessEcon, vol. 31(2), pages 1530-1547.
    13. Bradley, Michael D. & Jansen, Dennis W., 2004. "Forecasting with a nonlinear dynamic model of stock returns and industrial production," International Journal of Forecasting, Elsevier, vol. 20(2), pages 321-342.
    14. Sarantis, Nicholas, 1999. "Modeling non-linearities in real effective exchange rates," Journal of International Money and Finance, Elsevier, vol. 18(1), pages 27-45, January.
    15. Francisco Craveiro Dias, 2003. "Nonlinearities over the Business Cycle: an Application of the Smooth Transition Autoregressive Model to characterize GDP dynamics for the Euro-area and Portugal," Working Papers w200309, Banco de Portugal, Economics and Research Department.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liam Gallagher & Mark Hutchinson & John O’Brien, 2018. "Does Convertible Arbitrage Risk Exposure Vary Through Time?," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(04), pages 1-25, December.
    2. Jean-François Verne, 2016. "Instabilités politiques, guerre et croissance économique : le cas du Liban et des pays du Moyen-Orient," Revue d'économie politique, Dalloz, vol. 126(6), pages 1077-1103.
    3. Milas Costas & Legrenzi Gabriella, 2006. "Non-linear Real Exchange Rate Effects in the UK Labour Market," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(1), pages 1-34, March.
    4. Uctum, Remzi, 2007. "Économétrie des modèles à changement de régimes : un essai de synthèse," L'Actualité Economique, Société Canadienne de Science Economique, vol. 83(4), pages 447-482, décembre.
    5. Terasvirta, Timo, 2006. "Forecasting economic variables with nonlinear models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457, Elsevier.
    6. David Ubilava, 2014. "El Niño Southern Oscillation and the fishmeal–soya bean meal price ratio: regime-dependent dynamics revisited," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 41(4), pages 583-604.
    7. Mohamed CHIKHI & Claude DIEBOLT, 2022. "Testing the weak form efficiency of the French ETF market with the LSTAR-ANLSTGARCH approach using a semiparametric estimation," Eastern Journal of European Studies, Centre for European Studies, Alexandru Ioan Cuza University, vol. 13, pages 228-253, June.
    8. Rodrigo Aranda & Patricio Jaramillo, 2008. "Nonlinear Dynamic in the Chilean Stock Market: Evidence from Returns and Trading Volume," Working Papers Central Bank of Chile 463, Central Bank of Chile.
    9. Mehmet Balcilar & Rangan Gupta & Stephen M. Miller, 2015. "The out-of-sample forecasting performance of nonlinear models of regional housing prices in the US," Applied Economics, Taylor & Francis Journals, vol. 47(22), pages 2259-2277, May.
    10. Singh, Tarlok, 2014. "On the regime-switching and asymmetric dynamics of economic growth in the OECD countries," Research in Economics, Elsevier, vol. 68(2), pages 169-192.
    11. Mei-Se Chien, 2013. "The Non-linear Ripple Effect of Housing Prices in Taiwan: A Smooth Transition Regressive Model," ERES eres2013_51, European Real Estate Society (ERES).
    12. Sun, Yuying & Han, Ai & Hong, Yongmiao & Wang, Shouyang, 2018. "Threshold autoregressive models for interval-valued time series data," Journal of Econometrics, Elsevier, vol. 206(2), pages 414-446.
    13. Robinson Kruse & Michael Frömmel & Lukas Menkhoff & Philipp Sibbertsen, 2012. "What do we know about real exchange rate nonlinearities?," Empirical Economics, Springer, vol. 43(2), pages 457-474, October.
    14. Afsin Sahin, 2013. "Estimating Money Demand Function by a Smooth Transition Regression Model: An Evidence for Turkey," Working Papers 791, Economic Research Forum, revised Nov 2013.
    15. Christoph Berninger & Almond Stocker & David Rugamer, 2020. "A Bayesian Time-Varying Autoregressive Model for Improved Short- and Long-Term Prediction," Papers 2006.05750, arXiv.org, revised Feb 2021.
    16. Konstantin A., Kholodilin, 2003. "Identifying and Forecasting the Turns of the Japanese Business Cycle," LIDAM Discussion Papers IRES 2003008, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    17. Alvaro Escribano & Oscar Jorda, "undated". "Improved Testing And Specification Of Smooth Transition Regression Models," Department of Economics 97-26, California Davis - Department of Economics.
    18. Martinez Oscar & Olmo Jose, 2012. "A Nonlinear Threshold Model for the Dependence of Extremes of Stationary Sequences," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(3), pages 1-39, September.
    19. Louise Holm, 2016. "The Swedish business cycle, 1969-2013," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2015(2), pages 1-22.
    20. Chevallier, Julien, 2011. "Evaluating the carbon-macroeconomy relationship: Evidence from threshold vector error-correction and Markov-switching VAR models," Economic Modelling, Elsevier, vol. 28(6), pages 2634-2656.

    More about this item

    Keywords

    GDP growth rate; Business cycle; Asymmetry; Markovian;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E23 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Production
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:erh:journl:v:13:y:2021:i:3:p:71-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: M. F. Cosar (email available below). General contact details of provider: https://edirc.repec.org/data/eratrea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.