IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v80y2015i4p995-1019.html
   My bibliography  Save this article

On the Link between Cognitive Diagnostic Models and Knowledge Space Theory

Author

Listed:
  • Jürgen Heller
  • Luca Stefanutti
  • Pasquale Anselmi
  • Egidio Robusto

Abstract

The present work explores the connections between cognitive diagnostic models (CDM) and knowledge space theory (KST) and shows that these two quite distinct approaches overlap. It is proved that in fact the Multiple Strategy DINA (Deterministic Input Noisy AND-gate) model and the CBLIM, a competence-based extension of the basic local independence model (BLIM), are equivalent. To demonstrate the benefits that arise from integrating the two theoretical perspectives, it is shown that a fairly complete picture on the identifiability of these models emerges by combining results from both camps. The impact of the results is illustrated by an empirical example, and topics for further research are pointed out. Copyright The Psychometric Society 2015

Suggested Citation

  • Jürgen Heller & Luca Stefanutti & Pasquale Anselmi & Egidio Robusto, 2015. "On the Link between Cognitive Diagnostic Models and Knowledge Space Theory," Psychometrika, Springer;The Psychometric Society, vol. 80(4), pages 995-1019, December.
  • Handle: RePEc:spr:psycho:v:80:y:2015:i:4:p:995-1019
    DOI: 10.1007/s11336-015-9457-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11336-015-9457-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11336-015-9457-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jimmy Torre & Jeffrey Douglas, 2004. "Higher-order latent trait models for cognitive diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 69(3), pages 333-353, September.
    2. Curtis Tatsuoka, 2002. "Data analytic methods for latent partially ordered classification models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 51(3), pages 337-350, July.
    3. Edward Haertel, 1990. "Continuous and discrete latent structure models for item response data," Psychometrika, Springer;The Psychometric Society, vol. 55(3), pages 477-494, September.
    4. Curtis Tatsuoka & Ferenc Varadi & Judith Jaeger, 2013. "Latent Partially Ordered Classification Models and Normal Mixtures," Journal of Educational and Behavioral Statistics, , vol. 38(3), pages 267-294, June.
    5. E. Maris, 1999. "Estimating multiple classification latent class models," Psychometrika, Springer;The Psychometric Society, vol. 64(2), pages 187-212, June.
    6. Jimmy de la Torre, 2011. "The Generalized DINA Model Framework," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 179-199, April.
    7. Jimmy de la Torre & Jeffrey Douglas, 2008. "Model Evaluation and Multiple Strategies in Cognitive Diagnosis: An Analysis of Fraction Subtraction Data," Psychometrika, Springer;The Psychometric Society, vol. 73(4), pages 595-624, December.
    8. Jimmy Torre, 2011. "Erratum to: The Generalized DINA Model Framework," Psychometrika, Springer;The Psychometric Society, vol. 76(3), pages 510-510, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luca Stefanutti & Debora Chiusole & Pasquale Anselmi & Andrea Spoto, 2020. "Extending the Basic Local Independence Model to Polytomous Data," Psychometrika, Springer;The Psychometric Society, vol. 85(3), pages 684-715, September.
    2. Stefano Noventa & Andrea Spoto & Jürgen Heller & Augustin Kelava, 2019. "On a Generalization of Local Independence in Item Response Theory Based on Knowledge Space Theory," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 395-421, June.
    3. Youn Seon Lim, 2023. "Book Review of Essays on Contemporary Psychometrics by Van der Ark, Emons & Meijer," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 1092-1095, September.
    4. Pasquale Anselmi & Egidio Robusto & Luca Stefanutti & Debora Chiusole, 2016. "An Upgrading Procedure for Adaptive Assessment of Knowledge," Psychometrika, Springer;The Psychometric Society, vol. 81(2), pages 461-482, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazuhiro Yamaguchi & Kensuke Okada, 2020. "Variational Bayes Inference for the DINA Model," Journal of Educational and Behavioral Statistics, , vol. 45(5), pages 569-597, October.
    2. Yinghan Chen & Ying Liu & Steven Andrew Culpepper & Yuguo Chen, 2021. "Inferring the Number of Attributes for the Exploratory DINA Model," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 30-64, March.
    3. Yinyin Chen & Steven Culpepper & Feng Liang, 2020. "A Sparse Latent Class Model for Cognitive Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 121-153, March.
    4. Yinghan Chen & Shiyu Wang, 2023. "Bayesian Estimation of Attribute Hierarchy for Cognitive Diagnosis Models," Journal of Educational and Behavioral Statistics, , vol. 48(6), pages 810-841, December.
    5. Matthew S. Johnson & Sandip Sinharay, 2020. "The Reliability of the Posterior Probability of Skill Attainment in Diagnostic Classification Models," Journal of Educational and Behavioral Statistics, , vol. 45(1), pages 5-31, February.
    6. Hans-Friedrich Köhn & Chia-Yi Chiu, 2017. "A Procedure for Assessing the Completeness of the Q-Matrices of Cognitively Diagnostic Tests," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 112-132, March.
    7. Chen-Wei Liu & Björn Andersson & Anders Skrondal, 2020. "A Constrained Metropolis–Hastings Robbins–Monro Algorithm for Q Matrix Estimation in DINA Models," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 322-357, June.
    8. Hans Friedrich Köhn & Chia-Yi Chiu, 2021. "A Unified Theory of the Completeness of Q-Matrices for the DINA Model," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 500-518, October.
    9. Jimmy de la Torre & Xue-Lan Qiu & Kevin Carl Santos, 2022. "An Empirical Q-Matrix Validation Method for the Polytomous G-DINA Model," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 693-724, June.
    10. Motonori Oka & Kensuke Okada, 2023. "Scalable Bayesian Approach for the Dina Q-Matrix Estimation Combining Stochastic Optimization and Variational Inference," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 302-331, March.
    11. Jimmy de la Torre, 2011. "The Generalized DINA Model Framework," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 179-199, April.
    12. Peida Zhan & Wen-Chung Wang & Xiaomin Li, 2020. "A Partial Mastery, Higher-Order Latent Structural Model for Polytomous Attributes in Cognitive Diagnostic Assessments," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 328-351, July.
    13. Xuliang Gao & Wenchao Ma & Daxun Wang & Yan Cai & Dongbo Tu, 2021. "A Class of Cognitive Diagnosis Models for Polytomous Data," Journal of Educational and Behavioral Statistics, , vol. 46(3), pages 297-322, June.
    14. Hong-Yun Liu & Xiao-Feng You & Wen-Yi Wang & Shu-Liang Ding & Hua-Hua Chang, 2013. "The Development of Computerized Adaptive Testing with Cognitive Diagnosis for an English Achievement Test in China," Journal of Classification, Springer;The Classification Society, vol. 30(2), pages 152-172, July.
    15. Wenyi Wang & Lihong Song & Teng Wang & Peng Gao & Jian Xiong, 2020. "A Note on the Relationship of the Shannon Entropy Procedure and the Jensen–Shannon Divergence in Cognitive Diagnostic Computerized Adaptive Testing," SAGE Open, , vol. 10(1), pages 21582440198, January.
    16. Kazuhiro Yamaguchi & Jonathan Templin, 2022. "Direct Estimation of Diagnostic Classification Model Attribute Mastery Profiles via a Collapsed Gibbs Sampling Algorithm," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1390-1421, December.
    17. Mona Tabatabaee-Yazdi, 2020. "Hierarchical Diagnostic Classification Modeling of Reading Comprehension," SAGE Open, , vol. 10(2), pages 21582440209, June.
    18. Steven Andrew Culpepper, 2019. "Estimating the Cognitive Diagnosis $$\varvec{Q}$$ Q Matrix with Expert Knowledge: Application to the Fraction-Subtraction Dataset," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 333-357, June.
    19. Peida Zhan & Xin Qiao, 2022. "DIAGNOSTIC Classification Analysis of Problem-Solving Competence using Process Data: An Item Expansion Method," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1529-1547, December.
    20. Juntao Wang & Yuan Li, 2023. "DINA Model with Entropy Penalization," Mathematics, MDPI, vol. 11(18), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:80:y:2015:i:4:p:995-1019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.