IDEAS home Printed from https://ideas.repec.org/a/prs/ecoprv/ecop_0249-4744_2006_num_172_1_7478.html
   My bibliography  Save this article

Analyse factorielle dynamique multifréquence appliquée à la datation de la conjoncture française

Author

Listed:
  • Matthieu Cornec

Abstract

[fre] Un modèle à facteurs dynamiques est proposé pour dater au niveau mensuel la conjoncture française de 1985 à nos jours, en suivant la méthodologie proposée par Murasawa et Mariano. Ce modèle suppose une dynamique mensuelle commune entre le PIB trimestriel et d'autres grands indicateurs mensuels quantitatifs de l’économie française. L’estimation est effectuée par un filtre de Kalman. Au vu de l’indicateur ainsi construit, nous distinguons sept phases de conjoncture durant cette période. Une seule récession apparaît, de septembre 1992 à mai 1993. Enfin, cette méthode est appliquée aux enquêtes de conjoncture dans l’industrie afin de revisiter l’indicateur synthétique du climat des affaires publié par l’Insee. [eng] The author describes a dynamic-factor model to date the French economic cycle on a monthly basis from 1985 to the present, using the methodology proposed by Murasawa and Mariano. The model, estimated using a Kalman filter, assumes a common monthly dynamic between quarterly GDP and other major quantitative indicators of the French economy. The resulting indicator enables us to distinguish seven cyclical phases during the period. Only one recession appears, from September 1992 to May 1993. We also apply the method to business surveys in manufacturing in order to re-examine the “ synthetic ” business-climate indicator published by INSEE.

Suggested Citation

  • Matthieu Cornec, 2006. "Analyse factorielle dynamique multifréquence appliquée à la datation de la conjoncture française," Économie et Prévision, Programme National Persée, vol. 172(1), pages 29-43.
  • Handle: RePEc:prs:ecoprv:ecop_0249-4744_2006_num_172_1_7478
    DOI: 10.3406/ecop.2006.7478
    Note: DOI:10.3406/ecop.2006.7478
    as

    Download full text from publisher

    File URL: https://doi.org/10.3406/ecop.2006.7478
    Download Restriction: no

    File URL: https://www.persee.fr/doc/ecop_0249-4744_2006_num_172_1_7478
    Download Restriction: no

    File URL: https://libkey.io/10.3406/ecop.2006.7478?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. repec:adr:anecst:y:1999:i:54:p:05 is not listed on IDEAS
    2. Catherine Doz & Fabrice Lenglart, 1999. "Analyse factorielle dynamique : test du nombre de facteurs, estimation et application à l'enquête de conjoncture dans l'industrie," Annals of Economics and Statistics, GENES, issue 54, pages 91-127.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fondeur, Y. & Karamé, F., 2013. "Can Google data help predict French youth unemployment?," Economic Modelling, Elsevier, vol. 30(C), pages 117-125.
    2. Antonin Aviat & Frédérique Bec & Claude Diebolt & Catherine Doz & Denis Ferrand & Laurent Ferrara & Eric Heyer & Valérie Mignon & Pierre-Alain Pionnier, 2021. "Dating business cycles in France: a reference chronology," SciencePo Working papers Main hal-03373425, HAL.
    3. Marie Adanero-Donderis & Olivier Darné & Laurent Ferrara, 2009. "Un indicateur probabiliste du cycle d'accélération pour l'économie française," Economie & Prévision, La Documentation Française, vol. 0(3), pages 95-114.
    4. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    2. Antonin Aviat & Frédérique Bec & Claude Diebolt & Catherine Doz & Denis Ferrand & Laurent Ferrara & Eric Heyer & Valérie Mignon & Pierre-Alain Pionnier, 2021. "Dating business cycles in France: a reference chronology," SciencePo Working papers Main hal-03373425, HAL.
    3. Fabrice Lenglart & Fabien Toutlemonde, 2002. "Mieux appréhender le climat conjoncturel de la zone euro," Économie et Statistique, Programme National Persée, vol. 359(1), pages 69-81.
    4. repec:spo:wpmain:info:hdl:2441/2466 is not listed on IDEAS
    5. Fondeur, Y. & Karamé, F., 2013. "Can Google data help predict French youth unemployment?," Economic Modelling, Elsevier, vol. 30(C), pages 117-125.
    6. Giannone, Domenico & Reichlin, Lucrezia & Sala, Luca, 2006. "VARs, common factors and the empirical validation of equilibrium business cycle models," Journal of Econometrics, Elsevier, vol. 132(1), pages 257-279, May.
    7. Hélène Baron & Guillaume Baron, 2002. "Un indicateur probabiliste de retournement conjoncturel dans la zone euro," Économie et Statistique, Programme National Persée, vol. 359(1), pages 101-121.
    8. Thomas A. Knetsch, 2005. "Evaluating the German Inventory Cycle Using Data from the Ifo Business Survey," Contributions to Economics, in: Jan-Egbert Sturm & Timo Wollmershäuser (ed.), Ifo Survey Data in Business Cycle and Monetary Policy Analysis, pages 61-92, Springer.
    9. Buss, Ginters, 2010. "A note on GDP now-/forecasting with dynamic versus static factor models along a business cycle," MPRA Paper 22147, University Library of Munich, Germany.
    10. Cepii & Cepremap, 2001. "MARMOTTE : a Multinational Model," Working Papers 2001-15, CEPII research center.
    11. Éric Dubois, 2006. "Présentation générale," Économie et Prévision, Programme National Persée, vol. 172(1), pages 1-9.
    12. Matthieu Cornec & Thierry Deperraz, 2006. "Un nouvel indicateur synthétique mensuel résumant le climat des affaires dans les services en France," Économie et Statistique, Programme National Persée, vol. 395(1), pages 13-38.
    13. Monteforte, Libero, 2007. "Aggregation bias in macro models: Does it matter for the euro area?," Economic Modelling, Elsevier, vol. 24(2), pages 236-261, March.
    14. Daniel Grenouilleau, 2006. "The Stacked Leading Indicators Dynamic Factor Model: A Sensitivity Analysis of Forecast Accuracy using Bootstrapping," European Economy - Economic Papers 2008 - 2015 249, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    15. repec:hal:wpspec:info:hdl:2441/2466 is not listed on IDEAS
    16. Bruno, Giancarlo & Lupi, Claudio, 2003. "Forecasting Euro-Area Industrial Production Using (Mostly) Business Surveys Data," MPRA Paper 42332, University Library of Munich, Germany.
    17. repec:spo:wpecon:info:hdl:2441/2466 is not listed on IDEAS
    18. Muriel Nguiffo-Boyom, 2006. "Un indicateur de retournement conjoncturel pour la France : une application du modèle à facteur avec changements de régimes," Économie et Prévision, Programme National Persée, vol. 172(1), pages 101-114.
    19. Hélène Erkel-Rousse, 2006. "Les enquêtes de conjoncture : de l'analyse conjoncturelle aux études structurelles," Économie et Statistique, Programme National Persée, vol. 395(1), pages 3-11.
    20. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    21. repec:dau:papers:123456789/1483 is not listed on IDEAS
    22. Olivier Biau & Hélène Erkel-Rousse & Nicolas Ferrari, 2006. "Réponses individuelles aux enquêtes de conjoncture et prévision de la production manufacturière," Économie et Statistique, Programme National Persée, vol. 395(1), pages 91-116.
    23. Daniel Grenouilleau, 2004. "A sorted leading indicators dynamic (SLID) factor model for short-run euro-area GDP forecasting," European Economy - Economic Papers 2008 - 2015 219, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    24. Françoise Charpin & Hervé Péléraux, 2000. "L'indicateur avancé de l'OFCE," Revue de l'OFCE, Programme National Persée, vol. 72(1), pages 133-155.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:prs:ecoprv:ecop_0249-4744_2006_num_172_1_7478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Equipe PERSEE (email available below). General contact details of provider: https://www.persee.fr/collection/ecop .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.