IDEAS home Printed from https://ideas.repec.org/a/prs/ecoprv/ecop_0249-4744_2006_num_172_1_7482.html
   My bibliography  Save this article

Un indicateur de retournement conjoncturel pour la France : une application du modèle à facteur avec changements de régimes

Author

Listed:
  • Muriel Nguiffo-Boyom

Abstract

[fre] Dans cet article, on propose la construction d’un indicateur de retournement conjoncturel en utilisant un modèle à facteur avec changements de régimes. Le facteur représente l’opinion des professionnels concernant l’activité économique et est extrait à partir de quatre soldes d’opinion tirés de trois enquêtes de l’INSEE . Cette opinion est caractérisée par des phases d’optimisme et de pessimisme, modélisées à l’aide d’un modèle à changements de régimes markoviens. On peut ainsi prévoir les points de retournement de l’opinion, qui correspondent aux points de changement de régime du modèle. On montre que les points de retournement de l’opinion des professionnels annoncent les points de retournement de l’activité avec une certaine avance, ce qui permet de construire un indicateur de retournement conjoncturel. [eng] This article proposes the construction of a turning-point indicator obtained by estimating a dynamic-factor model with regime switching. The factor summarizing the sentiment of economic agents about economic activity is extracted from four balances of opinion in three business surveys conducted by the French National Statistical Institute (INSEE). The opinion displays optimistic and pessimistic phases, which are modeled with a Markov-switching model. We can also predict opinion turning points, which correspond to the model changes in the regime. We show that turning points in opinion tend to lead GDP turning points, a property that enables us to construct a cyclical turning-point indicator.

Suggested Citation

  • Muriel Nguiffo-Boyom, 2006. "Un indicateur de retournement conjoncturel pour la France : une application du modèle à facteur avec changements de régimes," Économie et Prévision, Programme National Persée, vol. 172(1), pages 101-114.
  • Handle: RePEc:prs:ecoprv:ecop_0249-4744_2006_num_172_1_7482
    DOI: 10.3406/ecop.2006.7482
    Note: DOI:10.3406/ecop.2006.7482
    as

    Download full text from publisher

    File URL: https://doi.org/10.3406/ecop.2006.7482
    Download Restriction: no

    File URL: https://www.persee.fr/doc/ecop_0249-4744_2006_num_172_1_7482
    Download Restriction: no

    File URL: https://libkey.io/10.3406/ecop.2006.7482?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stéphane Gregoir & Fabrice Lenglart, 1998. "Un nouvel indicateur pour saisir les retournements de conjoncture," Économie et Statistique, Programme National Persée, vol. 314(1), pages 39-60.
    2. Jacques Anas & Muriel Nguiffo-Boyom, 2001. "A New Indicator Based on Neftçi's Approach for Predicting Turning Points of the Euro-Zone Growth Cycle," Vierteljahrshefte zur Wirtschaftsforschung / Quarterly Journal of Economic Research, DIW Berlin, German Institute for Economic Research, vol. 70(3), pages 364-376.
    3. Diebold, Francis X & Rudebusch, Glenn D, 1996. "Measuring Business Cycles: A Modern Perspective," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 67-77, February.
    4. Arthur F. Burns & Wesley C. Mitchell, 1946. "Measuring Business Cycles," NBER Books, National Bureau of Economic Research, Inc, number burn46-1.
    5. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    6. Goldfeld, Stephen M. & Quandt, Richard E., 1973. "A Markov model for switching regressions," Journal of Econometrics, Elsevier, vol. 1(1), pages 3-15, March.
    7. Thomas J. Sargent & Christopher A. Sims, 1977. "Business cycle modeling without pretending to have too much a priori economic theory," Working Papers 55, Federal Reserve Bank of Minneapolis.
    8. Kim, Chang-Jin, 1994. "Dynamic linear models with Markov-switching," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 1-22.
    9. François Bouton & Hélène Erkel-Rousse, 2002. "Conjonctures sectorielles et prévision à court terme de l'activité : l'apport de l'enquête de conjoncture dans les services," Économie et Statistique, Programme National Persée, vol. 359(1), pages 35-68.
    10. repec:adr:anecst:y:1999:i:54:p:05 is not listed on IDEAS
    11. Catherine Doz & Fabrice Lenglart, 1999. "Analyse factorielle dynamique : test du nombre de facteurs, estimation et application à l'enquête de conjoncture dans l'industrie," Annals of Economics and Statistics, GENES, issue 54, pages 91-127.
    12. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonin Aviat & Frédérique Bec & Claude Diebolt & Catherine Doz & Denis Ferrand & Laurent Ferrara & Eric Heyer & Valérie Mignon & Pierre-Alain Pionnier, 2021. "Dating business cycles in France: a reference chronology," SciencePo Working papers Main hal-03373425, HAL.
    2. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Grace Lee, 2011. "Aggregate shocks decomposition for eight East Asian countries," Journal of the Asia Pacific Economy, Taylor & Francis Journals, vol. 16(2), pages 215-232.
    2. Harm Bandholz, 2005. "New Composite Leading Indicators for Hungary and Poland," ifo Working Paper Series 3, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    3. Konstantin A. Kholodilin, 2006. "Using the Dynamic Bi-Factor Model with Markov Switching to Predict the Cyclical Turns in the Large European Economies," Discussion Papers of DIW Berlin 554, DIW Berlin, German Institute for Economic Research.
    4. Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2012. "Combination schemes for turning point predictions," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(4), pages 402-412.
    5. Vincent, BODART & Konstantin, KHOLODILIN & Fati, SHADMAN-MEHTA, 2005. "Identifying and Forecasting the Turning Points of the Belgian Business Cycle with Regime-Switching and Logit Models," Discussion Papers (ECON - Département des Sciences Economiques) 2005006, Université catholique de Louvain, Département des Sciences Economiques.
    6. Wang, Jin-ming & Gao, Tie-mei & McNown, Robert, 2009. "Measuring Chinese business cycles with dynamic factor models," Journal of Asian Economics, Elsevier, vol. 20(2), pages 89-97, March.
    7. Marcelle Chauvet & James D. Hamilton, 2006. "Dating Business Cycle Turning Points," Contributions to Economic Analysis, in: Nonlinear Time Series Analysis of Business Cycles, pages 1-54, Emerald Group Publishing Limited.
    8. Michael Funke & Harm Bandholz, 2003. "In search of leading indicators of economic activity in Germany," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(4), pages 277-297.
    9. Kholodilin Konstantin A., 2005. "Forecasting the German Cyclical Turning Points: Dynamic Bi-Factor Model with Markov Switching," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 225(6), pages 653-674, December.
    10. Chang-Jin Kim & Chris Murray, 1999. "Permanent and Transitory Nature of Recessions," Discussion Papers in Economics at the University of Washington 0041, Department of Economics at the University of Washington.
    11. Leiva-Leon Danilo, 2014. "Real vs. nominal cycles: a multistate Markov-switching bi-factor approach," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(5), pages 557-580, December.
    12. Konstantin A. Kholodilin, 2005. "Forecasting the Turns of German Business Cycle: Dynamic Bi-factor Model with Markov Switching," Discussion Papers of DIW Berlin 494, DIW Berlin, German Institute for Economic Research.
    13. Olivier Biau & Hélène Erkel-Rousse & Nicolas Ferrari, 2006. "Réponses individuelles aux enquêtes de conjoncture et prévision de la production manufacturière," Économie et Statistique, Programme National Persée, vol. 395(1), pages 91-116.
    14. Chung-Ming Kuan, 2013. "Markov switching model (in Russian)," Quantile, Quantile, issue 11, pages 13-40, December.
    15. Monica Billio & Roberto Casarin, 2008. "Identifying Business Cycle Turning Points with Sequential Monte Carlo Methods," Working Papers 0815, University of Brescia, Department of Economics.
    16. Antonin Aviat & Frédérique Bec & Claude Diebolt & Catherine Doz & Denis Ferrand & Laurent Ferrara & Eric Heyer & Valérie Mignon & Pierre-Alain Pionnier, 2021. "Dating business cycles in France: a reference chronology," SciencePo Working papers Main hal-03373425, HAL.
    17. Chang-Jin Kim & Jeremy M. Piger & Richard Startz, 2001. "Permanent and transitory components of business cycles: their relative importance and dynamic relationship," International Finance Discussion Papers 703, Board of Governors of the Federal Reserve System (U.S.).
    18. Terence C. Mills & Ping Wang, 2003. "Multivariate Markov Switching Common Factor Models for the UK," Bulletin of Economic Research, Wiley Blackwell, vol. 55(2), pages 177-193, April.
    19. Sinclair Tara M, 2009. "Asymmetry in the Business Cycle: Friedman's Plucking Model with Correlated Innovations," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(1), pages 1-31, December.
    20. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:prs:ecoprv:ecop_0249-4744_2006_num_172_1_7482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Equipe PERSEE (email available below). General contact details of provider: https://www.persee.fr/collection/ecop .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.