IDEAS home Printed from https://ideas.repec.org/a/prs/ecstat/estat_0336-1454_2006_num_395_1_7130.html
   My bibliography  Save this article

Un nouvel indicateur synthétique mensuel résumant le climat des affaires dans les services en France

Author

Listed:
  • Matthieu Cornec
  • Thierry Deperraz

Abstract

[fre] Le nouvel indicateur synthétique mensuel présenté dans cet article constitue un résumé de l'information contenue dans l'enquête de conjoncture dans les services. Il est obtenu par extraction d'un signal commun à trois séries de fréquence mensuelle et trois de fréquence trimestrielle. L'approche retenue pour le construire relève du cadre de l'analyse factorielle dynamique. L'indicateur synthétique est le résultat de l'estimation d'un modèle à composantes inobservables. L'indicateur synthétique peut être appliqué aux trois sous-secteurs couverts par l'enquête de conjoncture dans les services (services aux entreprises, services aux particuliers et activités immobilières). Son examen confirme la reprise de l'activité dans l'ensemble des services à partir de la mi-2003. Cette reprise apparaît hésitante au deuxième semestre 2004 et semble s'essouffler début 2005. Cet indicateur peut être utilisé par le conjoncturiste pour actualiser sa prévision de la production trimestrielle de services au mois le mois et non plus seulement au trimestre le trimestre. En outre, il contient une information spécifique par rapport à l'indicateur synthétique du climat des affaires dans l'industrie manufacturière et contribue ainsi à la prévision du Pib. [spa] Un nuevo indicador sintético mensual que resume el clima económico en los servicios en Francia. El nuevo indicador sintético mensual presentado en este artículo constituye un resumen de la información contenida en la encuesta de coyuntura en los servicios. Éste se obtuvo mediante extracción de una señal común a tres series de frecuencia mensual y tres de frecuencia trimestral. El enfoque aceptado para su elaboración resulta del marco del análisis factorial dinámico. El indicador sintético es el resultado de la estimación de un modelo de componentes inobservables. El indicador sintético puede aplicarse a los tres subsectores cubiertos por la encuesta de coyuntura en los servicios (servicios a empresas, a particulares y actividades inmobiliarias). Su examen confi rma la reanudación de la actividad en el conjunto de los servicios a partir de mediados 2003. Esta reanudación se presenta vacilante en el segundo semestre 2004 y parece sofocarse a principios 2005. El analista puede servirse del indicador para actualizar su previsión de la producción trimestral de servicios mes a mes y no únicamente trimestre a trimestre. Además, contiene información específi ca con relación al indicador sintético del clima económico en la industria manufacturera, contribuyendo así a la previsión del P. I. B. [ger] Ein neuer synthetischer Monatsindikator für das Geschäftsklima in Frankreich. Der in diesem Artikel vorgestellte neue synthetische Monatsindikator stellt eine Zusammenfassung der Informationen aus der Konjunkturerhebung für den Dienstleistungssektor dar. Man erhält ihn durch Extraktion eines Signals, das drei Reihen von Monatsfrequenzen und drei Reihen von Quartalsfrequenzen gemeinsam ist. Der zu seiner Erstellung gewählte Ansatz ist Teil der dynamischen Faktoranalyse. Der synthetische Indikator ist das Ergebnis der Schätzung eines Modells mit nicht beobachtbaren Bestandteilen. Der synthetische Indikator kann bei drei Untersektoren der Konjunkturerhebung im Dienstleistungssektor (unternehmensbezogene Dienstleistungen, Dienstleistungen für Privatpersonen und Grundstücks-und Wohnungswesen) angewandt werden. Die Analyse dieses Indikators bestätigt den Aufschwung im gesamten Dienstleistungssektor seit Mitte 2003. Dieser Aufschwung ist im zweiten Halbjahr 2004 verhalten und scheint sich Anfang 2005 zu verlangsamen. Mit dem Indikator können die Konjunkturforscher ihre Prognosen der vierteljährlichen Erbringung von Dienstleistungen monatlich und nicht nur wie bislang vierteljährlich aktualisieren. Außerdem enthält er spezielle Informationen im Hinblick auf den synthetischen Indikator des Geschäftsklimas im verarbeitenden Gewerbe und trägt somit zur Vorausschätzung des BIP bei. [eng] A New Monthly Synthetic Indicator Summarising the Business Climate of the French Service Sector. The new monthly synthetic indicator proposed in this article summarizes the information contained in the French services business survey. It is obtained by extracting a signal common to three monthly series and to three quarterly series. The approach used in its construction falls within the scope of dynamic factor analysis. The synthetic indicator is the result of an estimation of an unobservable components model. The synthetic indicator can be applied to three sub-sectors covered by the services business survey (business services, household services and real estate activities). Examination of the indicator confi rms the recovery of activity in all of these services since mid-2003. The recovery appeared hesitant during the second quarter of 2004 and seemed to run out of steam at the beginning of 2005. An economic analyst can use the indicator to update a forecast of quarterly service production not just from one quarter to the next but also from month to month. Furthermore, it contains specifi c information with regard to the synthetic indicator of the business climate in the manufacturing industry and, therefore, contributes to the GDP forecast.

Suggested Citation

  • Matthieu Cornec & Thierry Deperraz, 2006. "Un nouvel indicateur synthétique mensuel résumant le climat des affaires dans les services en France," Économie et Statistique, Programme National Persée, vol. 395(1), pages 13-38.
  • Handle: RePEc:prs:ecstat:estat_0336-1454_2006_num_395_1_7130
    DOI: 10.3406/estat.2006.7130
    Note: DOI:10.3406/estat.2006.7130
    as

    Download full text from publisher

    File URL: https://doi.org/10.3406/estat.2006.7130
    Download Restriction: no

    File URL: https://www.persee.fr/doc/estat_0336-1454_2006_num_395_1_7130
    Download Restriction: no

    File URL: https://libkey.io/10.3406/estat.2006.7130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Roberto S. Mariano & Yasutomo Murasawa, 2003. "A new coincident index of business cycles based on monthly and quarterly series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(4), pages 427-443.
    2. Forni, Mario & Lippi, Marco, 2001. "The Generalized Dynamic Factor Model: Representation Theory," Econometric Theory, Cambridge University Press, vol. 17(6), pages 1113-1141, December.
    3. Davidson, Russell & MacKinnon, James G, 1981. "Several Tests for Model Specification in the Presence of Alternative Hypotheses," Econometrica, Econometric Society, vol. 49(3), pages 781-793, May.
    4. Krolzig, Hans-Martin & Hendry, David F., 2001. "Computer automation of general-to-specific model selection procedures," Journal of Economic Dynamics and Control, Elsevier, vol. 25(6-7), pages 831-866, June.
    5. Godfrey, Leslie G, 1978. "Testing for Higher Order Serial Correlation in Regression Equations When the Regressors Include Lagged Dependent Variables," Econometrica, Econometric Society, vol. 46(6), pages 1303-1310, November.
    6. Mario Forni & Lucrezia Reichlin, 1998. "Let's Get Real: A Factor Analytical Approach to Disaggregated Business Cycle Dynamics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 453-473.
    7. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    8. Nicholls, D F & Pagan, A R, 1983. "Heteroscedasticity in Models with Lagged Dependent Variables," Econometrica, Econometric Society, vol. 51(4), pages 1233-1242, July.
    9. Thomas J. Sargent & Christopher A. Sims, 1977. "Business cycle modeling without pretending to have too much a priori economic theory," Working Papers 55, Federal Reserve Bank of Minneapolis.
    10. François Bouton & Hélène Erkel-Rousse, 2002. "Conjonctures sectorielles et prévision à court terme de l'activité : l'apport de l'enquête de conjoncture dans les services," Économie et Statistique, Programme National Persée, vol. 359(1), pages 35-68.
    11. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409, National Bureau of Economic Research, Inc.
    12. repec:adr:anecst:y:1999:i:54:p:05 is not listed on IDEAS
    13. Catherine Doz & Fabrice Lenglart, 1999. "Analyse factorielle dynamique : test du nombre de facteurs, estimation et application à l'enquête de conjoncture dans l'industrie," Annals of Economics and Statistics, GENES, issue 54, pages 91-127.
    14. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marie Adanero-Donderis & Olivier Darné & Laurent Ferrara, 2009. "Un indicateur probabiliste du cycle d'accélération pour l'économie française," Economie & Prévision, La Documentation Française, vol. 0(3), pages 95-114.
    2. Fondeur, Y. & Karamé, F., 2013. "Can Google data help predict French youth unemployment?," Economic Modelling, Elsevier, vol. 30(C), pages 117-125.
    3. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marie Bessec, 2010. "Etalonnages du taux de croissance du PIB français sur la base des enquêtes de conjoncture," Economie & Prévision, La Documentation Française, vol. 0(2), pages 77-99.
    2. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    3. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    4. George Kapetanios & Massimiliano Marcellino, 2009. "A parametric estimation method for dynamic factor models of large dimensions," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 208-238, March.
    5. M. Ayhan Kose & Christopher Otrok & Eswar Prasad, 2012. "Global Business Cycles: Convergence Or Decoupling?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(2), pages 511-538, May.
    6. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    7. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2010. "Are disaggregate data useful for factor analysis in forecasting French GDP?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 132-144.
    8. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    9. Rueben Ellul & Germano Ruisi, 2022. "Nowcasting the Maltese economy with a dynamic factor model," CBM Working Papers WP/02/2022, Central Bank of Malta.
    10. Kihwan Kim & Norman Swanson, 2013. "Diffusion Index Model Specification and Estimation Using Mixed Frequency Datasets," Departmental Working Papers 201315, Rutgers University, Department of Economics.
    11. Reichlin, Lucrezia, 2002. "Factor Models in Large Cross-Sections of Time Series," CEPR Discussion Papers 3285, C.E.P.R. Discussion Papers.
    12. Lippi, Marco & Reichlin, Lucrezia & Hallin, Marc & Forni, Mario & Altissimo, Filippo & Cristadoro, Riccardo & Veronese, Giovanni & Bassanetti, Antonio, 2001. "EuroCOIN: A Real Time Coincident Indicator of the Euro Area Business Cycle," CEPR Discussion Papers 3108, C.E.P.R. Discussion Papers.
    13. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    14. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    15. Brandyn Bok & Daniele Caratelli & Domenico Giannone & Argia M. Sbordone & Andrea Tambalotti, 2018. "Macroeconomic Nowcasting and Forecasting with Big Data," Annual Review of Economics, Annual Reviews, vol. 10(1), pages 615-643, August.
    16. Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.
    17. Grassi, Stefano & Proietti, Tommaso & Frale, Cecilia & Marcellino, Massimiliano & Mazzi, Gianluigi, 2015. "EuroMInd-C: A disaggregate monthly indicator of economic activity for the Euro area and member countries," International Journal of Forecasting, Elsevier, vol. 31(3), pages 712-738.
    18. Bernanke, Ben S. & Boivin, Jean, 2003. "Monetary policy in a data-rich environment," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 525-546, April.
    19. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    20. Giannone, Domenico & Reichlin, Lucrezia & Sala, Luca, 2006. "VARs, common factors and the empirical validation of equilibrium business cycle models," Journal of Econometrics, Elsevier, vol. 132(1), pages 257-279, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:prs:ecstat:estat_0336-1454_2006_num_395_1_7130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Equipe PERSEE (email available below). General contact details of provider: https://www.persee.fr/collection/estat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.