IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0254319.html
   My bibliography  Save this article

The predictive skill of convolutional neural networks models for disease forecasting

Author

Listed:
  • Kookjin Lee
  • Jaideep Ray
  • Cosmin Safta

Abstract

In this paper we investigate the utility of one-dimensional convolutional neural network (CNN) models in epidemiological forecasting. Deep learning models, in particular variants of recurrent neural networks (RNNs) have been studied for ILI (Influenza-Like Illness) forecasting, and have achieved a higher forecasting skill compared to conventional models such as ARIMA. In this study, we adapt two neural networks that employ one-dimensional temporal convolutional layers as a primary building block—temporal convolutional networks and simple neural attentive meta-learners—for epidemiological forecasting. We then test them with influenza data from the US collected over 2010-2019. We find that epidemiological forecasting with CNNs is feasible, and their forecasting skill is comparable to, and at times, superior to, plain RNNs. Thus CNNs and RNNs bring the power of nonlinear transformations to purely data-driven epidemiological models, a capability that heretofore has been limited to more elaborate mechanistic/compartmental disease models.

Suggested Citation

  • Kookjin Lee & Jaideep Ray & Cosmin Safta, 2021. "The predictive skill of convolutional neural networks models for disease forecasting," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-26, July.
  • Handle: RePEc:plo:pone00:0254319
    DOI: 10.1371/journal.pone.0254319
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0254319
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0254319&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0254319?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrea Freyer Dugas & Mehdi Jalalpour & Yulia Gel & Scott Levin & Fred Torcaso & Takeru Igusa & Richard E Rothman, 2013. "Influenza Forecasting with Google Flu Trends," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-7, February.
    2. Logan C Brooks & David C Farrow & Sangwon Hyun & Ryan J Tibshirani & Roni Rosenfeld, 2018. "Nonmechanistic forecasts of seasonal influenza with iterative one-week-ahead distributions," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-29, June.
    3. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    4. Svitlana Volkova & Ellyn Ayton & Katherine Porterfield & Courtney D Corley, 2017. "Forecasting influenza-like illness dynamics for military populations using neural networks and social media," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-22, December.
    5. Radina P Soebiyanto & Farida Adimi & Richard K Kiang, 2010. "Modeling and Predicting Seasonal Influenza Transmission in Warm Regions Using Climatological Parameters," PLOS ONE, Public Library of Science, vol. 5(3), pages 1-10, March.
    6. Fred S. Lu & Mohammad W. Hattab & Cesar Leonardo Clemente & Matthew Biggerstaff & Mauricio Santillana, 2019. "Improved state-level influenza nowcasting in the United States leveraging Internet-based data and network approaches," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor Olsavszky & Mihnea Dosius & Cristian Vladescu & Johannes Benecke, 2020. "Time Series Analysis and Forecasting with Automated Machine Learning on a National ICD-10 Database," IJERPH, MDPI, vol. 17(14), pages 1-17, July.
    2. Daniel Alejandro Gónzalez-Bandala & Juan Carlos Cuevas-Tello & Daniel E. Noyola & Andreu Comas-García & Christian A García-Sepúlveda, 2020. "Computational Forecasting Methodology for Acute Respiratory Infectious Disease Dynamics," IJERPH, MDPI, vol. 17(12), pages 1-20, June.
    3. Tian-Shyug Lee & I-Fei Chen & Ting-Jen Chang & Chi-Jie Lu, 2020. "Forecasting Weekly Influenza Outpatient Visits Using a Two-Dimensional Hierarchical Decision Tree Scheme," IJERPH, MDPI, vol. 17(13), pages 1-15, July.
    4. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    5. Sangwon Chae & Sungjun Kwon & Donghyun Lee, 2018. "Predicting Infectious Disease Using Deep Learning and Big Data," IJERPH, MDPI, vol. 15(8), pages 1-20, July.
    6. Logan C Brooks & David C Farrow & Sangwon Hyun & Ryan J Tibshirani & Roni Rosenfeld, 2015. "Flexible Modeling of Epidemics with an Empirical Bayes Framework," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-18, August.
    7. Logan C Brooks & David C Farrow & Sangwon Hyun & Ryan J Tibshirani & Roni Rosenfeld, 2018. "Nonmechanistic forecasts of seasonal influenza with iterative one-week-ahead distributions," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-29, June.
    8. Dave Osthus & Ashlynn R Daughton & Reid Priedhorsky, 2019. "Even a good influenza forecasting model can benefit from internet-based nowcasts, but those benefits are limited," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-19, February.
    9. Victor Bystrov, 2018. "Measuring the Natural Rates of Interest in Germany and Italy," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(4), pages 333-353, December.
    10. Yukai Yang & Luc Bauwens, 2018. "State-Space Models on the Stiefel Manifold with a New Approach to Nonlinear Filtering," Econometrics, MDPI, vol. 6(4), pages 1-22, December.
    11. Fernández-Macho, Javier, 2008. "Spectral estimation of a structural thin-plate smoothing model," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 189-195, September.
    12. Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
    13. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    14. François R. Velde, 2009. "Chronicle of a Deflation Unforetold," Journal of Political Economy, University of Chicago Press, vol. 117(4), pages 591-634, August.
    15. Chen, Peimin & Wu, Chunchi, 2014. "Default prediction with dynamic sectoral and macroeconomic frailties," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 211-226.
    16. repec:zbw:bofitp:2019_008 is not listed on IDEAS
    17. Yue Zhao & Difang Wan, 2018. "Institutional high frequency trading and price discovery: Evidence from an emerging commodity futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(2), pages 243-270, February.
    18. Wen Xu, 2016. "Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters," Econometrics, MDPI, vol. 4(4), pages 1-13, October.
    19. Scott Brave & R. Andrew Butters & Alejandro Justiniano, 2016. "Forecasting Economic Activity with Mixed Frequency Bayesian VARs," Working Paper Series WP-2016-5, Federal Reserve Bank of Chicago.
    20. repec:spo:wpmain:info:hdl:2441/1904 is not listed on IDEAS
    21. Hári, Norbert & De Waegenaere, Anja & Melenberg, Bertrand & Nijman, Theo E., 2008. "Estimating the term structure of mortality," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 492-504, April.
    22. Brave, Scott A. & Gascon, Charles & Kluender, William & Walstrum, Thomas, 2021. "Predicting benchmarked US state employment data in real time," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1261-1275.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0254319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.