IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0009450.html
   My bibliography  Save this article

Modeling and Predicting Seasonal Influenza Transmission in Warm Regions Using Climatological Parameters

Author

Listed:
  • Radina P Soebiyanto
  • Farida Adimi
  • Richard K Kiang

Abstract

Background: Influenza transmission is often associated with climatic factors. As the epidemic pattern varies geographically, the roles of climatic factors may not be unique. Previous in vivo studies revealed the direct effect of winter-like humidity on air-borne influenza transmission that dominates in regions with temperate climate, while influenza in the tropics is more effectively transmitted through direct contact. Methodology/Principal Findings: Using time series model, we analyzed the role of climatic factors on the epidemiology of influenza transmission in two regions characterized by warm climate: Hong Kong (China) and Maricopa County (Arizona, USA). These two regions have comparable temperature but distinctly different rainfall. Specifically we employed Autoregressive Integrated Moving Average (ARIMA) model along with climatic parameters as measured from ground stations and NASA satellites. Our studies showed that including the climatic variables as input series result in models with better performance than the univariate model where the influenza cases depend only on its past values and error signal. The best model for Hong Kong influenza was obtained when Land Surface Temperature (LST), rainfall and relative humidity were included as input series. Meanwhile for Maricopa County we found that including either maximum atmospheric pressure or mean air temperature gave the most improvement in the model performances. Conclusions/Significance: Our results showed that including the environmental variables generally increases the prediction capability. Therefore, for countries without advanced influenza surveillance systems, environmental variables can be used for estimating influenza transmission at present and in the near future.

Suggested Citation

  • Radina P Soebiyanto & Farida Adimi & Richard K Kiang, 2010. "Modeling and Predicting Seasonal Influenza Transmission in Warm Regions Using Climatological Parameters," PLOS ONE, Public Library of Science, vol. 5(3), pages 1-10, March.
  • Handle: RePEc:plo:pone00:0009450
    DOI: 10.1371/journal.pone.0009450
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0009450
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0009450&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0009450?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bekiros, Stelios & Kouloumpou, Dimitra, 2020. "SBDiEM: A new mathematical model of infectious disease dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    2. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    3. Nikolopoulos, Konstantinos & Punia, Sushil & Schäfers, Andreas & Tsinopoulos, Christos & Vasilakis, Chrysovalantis, 2021. "Forecasting and planning during a pandemic: COVID-19 growth rates, supply chain disruptions, and governmental decisions," European Journal of Operational Research, Elsevier, vol. 290(1), pages 99-115.
    4. Hongjiang Gao & Karen K Wong & Yenlik Zheteyeva & Jianrong Shi & Amra Uzicanin & Jeanette J Rainey, 2015. "Comparing Observed with Predicted Weekly Influenza-Like Illness Rates during the Winter Holiday Break, United States, 2004-2013," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-11, December.
    5. Ka Chun Chong & William Goggins & Benny Chung Ying Zee & Maggie Haitian Wang, 2015. "Identifying Meteorological Drivers for the Seasonal Variations of Influenza Infections in a Subtropical City — Hong Kong," IJERPH, MDPI, vol. 12(2), pages 1-17, January.
    6. Xiao-Dong Yang & Hong-Li Li & Yue-E Cao, 2021. "Influence of Meteorological Factors on the COVID-19 Transmission with Season and Geographic Location," IJERPH, MDPI, vol. 18(2), pages 1-13, January.
    7. Soo Beom Choi & Juhyeon Kim & Insung Ahn, 2019. "Forecasting type-specific seasonal influenza after 26 weeks in the United States using influenza activities in other countries," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-15, November.
    8. Sims, Charles & Finnoff, David & O’Regan, Suzanne M., 2016. "Public control of rational and unpredictable epidemics," Journal of Economic Behavior & Organization, Elsevier, vol. 132(PB), pages 161-176.
    9. Jean-Paul Chretien & Dylan George & Jeffrey Shaman & Rohit A Chitale & F Ellis McKenzie, 2014. "Influenza Forecasting in Human Populations: A Scoping Review," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-8, April.
    10. Charles Stoecker & Nicholas J. Sanders & Alan Barreca, 2016. "Success Is Something to Sneeze At: Influenza Mortality in Cities that Participate in the Super Bowl," American Journal of Health Economics, MIT Press, vol. 2(1), pages 125-143, January.
    11. Wudi Wei & Junjun Jiang & Hao Liang & Lian Gao & Bingyu Liang & Jiegang Huang & Ning Zang & Yanyan Liao & Jun Yu & Jingzhen Lai & Fengxiang Qin & Jinming Su & Li Ye & Hui Chen, 2016. "Application of a Combined Model with Autoregressive Integrated Moving Average (ARIMA) and Generalized Regression Neural Network (GRNN) in Forecasting Hepatitis Incidence in Heng County, China," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-13, June.
    12. Oren Barnea & Amit Huppert & Guy Katriel & Lewi Stone, 2014. "Spatio-Temporal Synchrony of Influenza in Cities across Israel: The “Israel Is One City” Hypothesis," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.
    13. Logan C Brooks & David C Farrow & Sangwon Hyun & Ryan J Tibshirani & Roni Rosenfeld, 2018. "Nonmechanistic forecasts of seasonal influenza with iterative one-week-ahead distributions," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-29, June.
    14. Rui Zhang & Hejia Song & Qiulan Chen & Yu Wang & Songwang Wang & Yonghong Li, 2022. "Comparison of ARIMA and LSTM for prediction of hemorrhagic fever at different time scales in China," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-14, January.
    15. Alexander Cardazzi & Brad Humphreys & Jane E. Ruseski & Brian P. Soebbing & Nicholas Watanabe, 2020. "Professional Sporting Events Increase Seasonal Influenza Mortality in US Cities," Working Papers 20-08, Department of Economics, West Virginia University.
    16. Guoliang Zhang & Shuqiong Huang & Qionghong Duan & Wen Shu & Yongchun Hou & Shiyu Zhu & Xiaoping Miao & Shaofa Nie & Sheng Wei & Nan Guo & Hua Shan & Yihua Xu, 2013. "Application of a Hybrid Model for Predicting the Incidence of Tuberculosis in Hubei, China," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-1, November.
    17. Logan C Brooks & David C Farrow & Sangwon Hyun & Ryan J Tibshirani & Roni Rosenfeld, 2015. "Flexible Modeling of Epidemics with an Empirical Bayes Framework," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-18, August.
    18. Soo Beom Choi & Insung Ahn, 2020. "Forecasting seasonal influenza-like illness in South Korea after 2 and 30 weeks using Google Trends and influenza data from Argentina," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-14, July.
    19. Kookjin Lee & Jaideep Ray & Cosmin Safta, 2021. "The predictive skill of convolutional neural networks models for disease forecasting," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-26, July.
    20. Can Chen & Xiaobao Zhang & Daixi Jiang & Danying Yan & Zhou Guan & Yuqing Zhou & Xiaoxiao Liu & Chenyang Huang & Cheng Ding & Lei Lan & Xihui Huang & Lanjuan Li & Shigui Yang, 2021. "Associations between Temperature and Influenza Activity: A National Time Series Study in China," IJERPH, MDPI, vol. 18(20), pages 1-11, October.
    21. Charles Stoecker & Nicholas J. Sanders & Alan Barreca, 2015. "Success is Something to Sneeze at: Influenza Mortality in Regions that Send Teams to the Super Bowl," Working Papers 1501, Tulane University, Department of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0009450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.