IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i12p4540-d375631.html
   My bibliography  Save this article

Computational Forecasting Methodology for Acute Respiratory Infectious Disease Dynamics

Author

Listed:
  • Daniel Alejandro Gónzalez-Bandala

    (Engineering Faculty, UASLP, San Luis Potosí 78290, Mexico
    Commerce and Administration Faculty, UAT, Tamaulipas 87000, Mexico)

  • Juan Carlos Cuevas-Tello

    (Engineering Faculty, UASLP, San Luis Potosí 78290, Mexico)

  • Daniel E. Noyola

    (Microbiology Department, Medicine Faculty, UASLP, San Luis Potosí 78290, Mexico)

  • Andreu Comas-García

    (Microbiology Department, Medicine Faculty, UASLP, San Luis Potosí 78290, Mexico)

  • Christian A García-Sepúlveda

    (Viral and Human Genomics Laboratory, Medicine Faculty, UASLP, San Luis Potosí 78290, Mexico)

Abstract

The study of infectious disease behavior has been a scientific concern for many years as early identification of outbreaks provides great advantages including timely implementation of public health measures to limit the spread of an epidemic. We propose a methodology that merges the predictions of (i) a computational model with machine learning, (ii) a projection model, and (iii) a proposed smoothed endemic channel calculation. The predictions are made on weekly acute respiratory infection (ARI) data obtained from epidemiological reports in Mexico, along with the usage of key terms in the Google search engine. The results obtained with this methodology were compared with state-of-the-art techniques resulting in reduced root mean squared percentage error (RMPSE) and maximum absolute percent error (MAPE) metrics, achieving a MAPE of 21.7%. This methodology could be extended to detect and raise alerts on possible outbreaks on ARI as well as for other seasonal infectious diseases.

Suggested Citation

  • Daniel Alejandro Gónzalez-Bandala & Juan Carlos Cuevas-Tello & Daniel E. Noyola & Andreu Comas-García & Christian A García-Sepúlveda, 2020. "Computational Forecasting Methodology for Acute Respiratory Infectious Disease Dynamics," IJERPH, MDPI, vol. 17(12), pages 1-20, June.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:12:p:4540-:d:375631
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/12/4540/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/12/4540/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrea Freyer Dugas & Mehdi Jalalpour & Yulia Gel & Scott Levin & Fred Torcaso & Takeru Igusa & Richard E Rothman, 2013. "Influenza Forecasting with Google Flu Trends," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-7, February.
    2. Vogt, R.L. & LaRue, D. & Klaucke, D.N. & Jillson, D.A., 1983. "Comparison of an active and passive surveillance system of primary care providers for hepatitis, measles, rubella, and salmonellosis in Vermont," American Journal of Public Health, American Public Health Association, vol. 73(7), pages 795-797.
    3. Svitlana Volkova & Ellyn Ayton & Katherine Porterfield & Courtney D Corley, 2017. "Forecasting influenza-like illness dynamics for military populations using neural networks and social media," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-22, December.
    4. Jeremy Ginsberg & Matthew H. Mohebbi & Rajan S. Patel & Lynnette Brammer & Mark S. Smolinski & Larry Brilliant, 2009. "Detecting influenza epidemics using search engine query data," Nature, Nature, vol. 457(7232), pages 1012-1014, February.
    5. Qinneng Xu & Yulia R Gel & L Leticia Ramirez Ramirez & Kusha Nezafati & Qingpeng Zhang & Kwok-Leung Tsui, 2017. "Forecasting influenza in Hong Kong with Google search queries and statistical model fusion," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ibrahim Musa & Hyun Woo Park & Lkhagvadorj Munkhdalai & Keun Ho Ryu, 2018. "Global Research on Syndromic Surveillance from 1993 to 2017: Bibliometric Analysis and Visualization," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
    2. Victor Olsavszky & Mihnea Dosius & Cristian Vladescu & Johannes Benecke, 2020. "Time Series Analysis and Forecasting with Automated Machine Learning on a National ICD-10 Database," IJERPH, MDPI, vol. 17(14), pages 1-17, July.
    3. Sangwon Chae & Sungjun Kwon & Donghyun Lee, 2018. "Predicting Infectious Disease Using Deep Learning and Big Data," IJERPH, MDPI, vol. 15(8), pages 1-20, July.
    4. Fantazzini, Dean, 2020. "Short-term forecasting of the COVID-19 pandemic using Google Trends data: Evidence from 158 countries," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 33-54.
    5. Abay,Kibrom A. & Hirfrfot,Kibrom Tafere & Woldemichael,Andinet, 2020. "Winners and Losers from COVID-19 : Global Evidence from Google Search," Policy Research Working Paper Series 9268, The World Bank.
    6. Zeynep Ertem & Dorrie Raymond & Lauren Ancel Meyers, 2018. "Optimal multi-source forecasting of seasonal influenza," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-16, September.
    7. Jose L Herrera & Ravi Srinivasan & John S Brownstein & Alison P Galvani & Lauren Ancel Meyers, 2016. "Disease Surveillance on Complex Social Networks," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-16, July.
    8. Mansour Ebrahimi & Parisa Aghagolzadeh & Narges Shamabadi & Ahmad Tahmasebi & Mohammed Alsharifi & David L Adelson & Farhid Hemmatzadeh & Esmaeil Ebrahimie, 2014. "Understanding the Underlying Mechanism of HA-Subtyping in the Level of Physic-Chemical Characteristics of Protein," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-14, May.
    9. Tian-Shyug Lee & I-Fei Chen & Ting-Jen Chang & Chi-Jie Lu, 2020. "Forecasting Weekly Influenza Outpatient Visits Using a Two-Dimensional Hierarchical Decision Tree Scheme," IJERPH, MDPI, vol. 17(13), pages 1-15, July.
    10. Halousková, Martina & Stašek, Daniel & Horváth, Matúš, 2022. "The role of investor attention in global asset price variation during the invasion of Ukraine," Finance Research Letters, Elsevier, vol. 50(C).
    11. Livio Fenga, 2020. "Filtering and prediction of noisy and unstable signals: The case of Google Trends data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 281-295, March.
    12. Logan C Brooks & David C Farrow & Sangwon Hyun & Ryan J Tibshirani & Roni Rosenfeld, 2015. "Flexible Modeling of Epidemics with an Empirical Bayes Framework," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-18, August.
    13. Kookjin Lee & Jaideep Ray & Cosmin Safta, 2021. "The predictive skill of convolutional neural networks models for disease forecasting," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-26, July.
    14. Jichang Dong & Wei Dai & Ying Liu & Lean Yu & Jie Wang, 2019. "Forecasting Chinese Stock Market Prices using Baidu Search Index with a Learning-Based Data Collection Method," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1605-1629, September.
    15. Logan C Brooks & David C Farrow & Sangwon Hyun & Ryan J Tibshirani & Roni Rosenfeld, 2018. "Nonmechanistic forecasts of seasonal influenza with iterative one-week-ahead distributions," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-29, June.
    16. Taichi Murayama & Nobuyuki Shimizu & Sumio Fujita & Shoko Wakamiya & Eiji Aramaki, 2020. "Robust two-stage influenza prediction model considering regular and irregular trends," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-14, May.
    17. Baek, Changryong & Davis, Richard A. & Pipiras, Vladas, 2017. "Sparse seasonal and periodic vector autoregressive modeling," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 103-126.
    18. Yu-Chih Wei & Yan-Ling Ou & Jianqiang Li & Wei-Chen Wu, 2022. "Forecasting the Potential Number of Influenza-like Illness Cases by Fusing Internet Public Opinion," Sustainability, MDPI, vol. 14(5), pages 1-24, February.
    19. David H Chae & Sean Clouston & Mark L Hatzenbuehler & Michael R Kramer & Hannah L F Cooper & Sacoby M Wilson & Seth I Stephens-Davidowitz & Robert S Gold & Bruce G Link, 2015. "Association between an Internet-Based Measure of Area Racism and Black Mortality," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-12, April.
    20. Xiaoli Wang & Shuangsheng Wu & C Raina MacIntyre & Hongbin Zhang & Weixian Shi & Xiaomin Peng & Wei Duan & Peng Yang & Yi Zhang & Quanyi Wang, 2015. "Using an Adjusted Serfling Regression Model to Improve the Early Warning at the Arrival of Peak Timing of Influenza in Beijing," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-14, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:12:p:4540-:d:375631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.