IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004382.html
   My bibliography  Save this article

Flexible Modeling of Epidemics with an Empirical Bayes Framework

Author

Listed:
  • Logan C Brooks
  • David C Farrow
  • Sangwon Hyun
  • Ryan J Tibshirani
  • Roni Rosenfeld

Abstract

Seasonal influenza epidemics cause consistent, considerable, widespread loss annually in terms of economic burden, morbidity, and mortality. With access to accurate and reliable forecasts of a current or upcoming influenza epidemic’s behavior, policy makers can design and implement more effective countermeasures. This past year, the Centers for Disease Control and Prevention hosted the “Predict the Influenza Season Challenge”, with the task of predicting key epidemiological measures for the 2013–2014 U.S. influenza season with the help of digital surveillance data. We developed a framework for in-season forecasts of epidemics using a semiparametric Empirical Bayes framework, and applied it to predict the weekly percentage of outpatient doctors visits for influenza-like illness, and the season onset, duration, peak time, and peak height, with and without using Google Flu Trends data. Previous work on epidemic modeling has focused on developing mechanistic models of disease behavior and applying time series tools to explain historical data. However, tailoring these models to certain types of surveillance data can be challenging, and overly complex models with many parameters can compromise forecasting ability. Our approach instead produces possibilities for the epidemic curve of the season of interest using modified versions of data from previous seasons, allowing for reasonable variations in the timing, pace, and intensity of the seasonal epidemics, as well as noise in observations. Since the framework does not make strict domain-specific assumptions, it can easily be applied to some other diseases with seasonal epidemics. This method produces a complete posterior distribution over epidemic curves, rather than, for example, solely point predictions of forecasting targets. We report prospective influenza-like-illness forecasts made for the 2013–2014 U.S. influenza season, and compare the framework’s cross-validated prediction error on historical data to that of a variety of simpler baseline predictors.Author Summary: Influenza epidemics occur annually, and incur significant losses in terms of lost productivity, sickness, and death. Policy makers employ countermeasures, such as vaccination campaigns, to combat the occurrence and spread of infectious diseases, but epidemics exhibit a wide range of behavior, which makes designing and planning these efforts difficult. Accurate and reliable numerical forecasts of how an epidemic will behave, as well as advance notice of key events, could enable policy makers to further specialize countermeasures for a particular season. While a large amount of work already exists on modeling epidemics in past seasons, work on forecasting is relatively sparse. Specially tailored models for historical data may be overly strict and fail to produce behavior similar to the current season. We designed a framework for predicting epidemics without making strong assumptions about how the disease propagates by relying on slightly modified versions of past epidemics to form possibilities for the current season. We report forecasts generated for the 2013–2014 Centers for Disease Control and Prevention (CDC) “Predict the Influenza Season Challenge”, and assess its accuracy retrospectively.

Suggested Citation

  • Logan C Brooks & David C Farrow & Sangwon Hyun & Ryan J Tibshirani & Roni Rosenfeld, 2015. "Flexible Modeling of Epidemics with an Empirical Bayes Framework," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-18, August.
  • Handle: RePEc:plo:pcbi00:1004382
    DOI: 10.1371/journal.pcbi.1004382
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004382
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004382&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004382?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrea Freyer Dugas & Mehdi Jalalpour & Yulia Gel & Scott Levin & Fred Torcaso & Takeru Igusa & Richard E Rothman, 2013. "Influenza Forecasting with Google Flu Trends," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-7, February.
    2. Jimmy Boon Som Ong & Mark I-Cheng Chen & Alex R Cook & Huey Chyi Lee & Vernon J Lee & Raymond Tzer Pin Lin & Paul Ananth Tambyah & Lee Gan Goh, 2010. "Real-Time Epidemic Monitoring and Forecasting of H1N1-2009 Using Influenza-Like Illness from General Practice and Family Doctor Clinics in Singapore," PLOS ONE, Public Library of Science, vol. 5(4), pages 1-11, April.
    3. Simas, Alexandre B. & Barreto-Souza, Wagner & Rocha, Andréa V., 2010. "Improved estimators for a general class of beta regression models," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 348-366, February.
    4. Neil M. Ferguson & Derek A. T. Cummings & Christophe Fraser & James C. Cajka & Philip C. Cooley & Donald S. Burke, 2006. "Strategies for mitigating an influenza pandemic," Nature, Nature, vol. 442(7101), pages 448-452, July.
    5. Radina P Soebiyanto & Farida Adimi & Richard K Kiang, 2010. "Modeling and Predicting Seasonal Influenza Transmission in Warm Regions Using Climatological Parameters," PLOS ONE, Public Library of Science, vol. 5(3), pages 1-10, March.
    6. Silvia Ferrari & Francisco Cribari-Neto, 2004. "Beta Regression for Modelling Rates and Proportions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(7), pages 799-815.
    7. Cribari-Neto, Francisco & Zeileis, Achim, 2010. "Beta Regression in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 34(i02).
    8. Jeremy Ginsberg & Matthew H. Mohebbi & Rajan S. Patel & Lynnette Brammer & Mark S. Smolinski & Larry Brilliant, 2009. "Detecting influenza epidemics using search engine query data," Nature, Nature, vol. 457(7232), pages 1012-1014, February.
    9. Wan Yang & Alicia Karspeck & Jeffrey Shaman, 2014. "Comparison of Filtering Methods for the Modeling and Retrospective Forecasting of Influenza Epidemics," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-15, April.
    10. Aaron A. King & Edward L. Ionides & Mercedes Pascual & Menno J. Bouma, 2008. "Inapparent infections and cholera dynamics," Nature, Nature, vol. 454(7206), pages 877-880, August.
    11. Jean-Paul Chretien & Dylan George & Jeffrey Shaman & Rohit A Chitale & F Ellis McKenzie, 2014. "Influenza Forecasting in Human Populations: A Scoping Review," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-8, April.
    12. Vittoria Colizza & Alain Barrat & Marc Barthelemy & Alain-Jacques Valleron & Alessandro Vespignani, 2007. "Modeling the Worldwide Spread of Pandemic Influenza: Baseline Case and Containment Interventions," PLOS Medicine, Public Library of Science, vol. 4(1), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arthur Novaes de Amorim & Rob Deardon & Vineet Saini, 2021. "A stacked ensemble method for forecasting influenza-like illness visit volumes at emergency departments," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-15, March.
    2. Teresa K Yamana & Sasikiran Kandula & Jeffrey Shaman, 2017. "Individual versus superensemble forecasts of seasonal influenza outbreaks in the United States," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-17, November.
    3. Jialiang Liu & Sumihiro Suzuki, 2022. "Real-Time Detection of Flu Season Onset: A Novel Approach to Flu Surveillance," IJERPH, MDPI, vol. 19(6), pages 1-9, March.
    4. Petropoulos, Fotios & Makridakis, Spyros & Stylianou, Neophytos, 2022. "COVID-19: Forecasting confirmed cases and deaths with a simple time series model," International Journal of Forecasting, Elsevier, vol. 38(2), pages 439-452.
    5. Jeffrey S Chrabaszcz & Joe W Tidwell & Michael R Dougherty, 2017. "Crowdsourcing prior information to improve study design and data analysis," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-16, November.
    6. Sequoia I Leuba & Reza Yaesoubi & Marina Antillon & Ted Cohen & Christoph Zimmer, 2020. "Tracking and predicting U.S. influenza activity with a real-time surveillance network," PLOS Computational Biology, Public Library of Science, vol. 16(11), pages 1-14, November.
    7. Prithwish Chakraborty & Bryan Lewis & Stephen Eubank & John S Brownstein & Madhav Marathe & Naren Ramakrishnan, 2018. "What to know before forecasting the flu," PLOS Computational Biology, Public Library of Science, vol. 14(10), pages 1-7, October.
    8. Jeffrey Shaman & Sasikiran Kandula & Wan Yang & Alicia Karspeck, 2017. "The use of ambient humidity conditions to improve influenza forecast," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-16, November.
    9. Sen Pei & Jeffrey Shaman, 2020. "Aggregating forecasts of multiple respiratory pathogens supports more accurate forecasting of influenza-like illness," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-19, October.
    10. Junyi Lu & Sebastian Meyer, 2020. "Forecasting Flu Activity in the United States: Benchmarking an Endemic-Epidemic Beta Model," IJERPH, MDPI, vol. 17(4), pages 1-13, February.
    11. David C Farrow & Logan C Brooks & Sangwon Hyun & Ryan J Tibshirani & Donald S Burke & Roni Rosenfeld, 2017. "A human judgment approach to epidemiological forecasting," PLOS Computational Biology, Public Library of Science, vol. 13(3), pages 1-19, March.
    12. Logan C Brooks & David C Farrow & Sangwon Hyun & Ryan J Tibshirani & Roni Rosenfeld, 2018. "Nonmechanistic forecasts of seasonal influenza with iterative one-week-ahead distributions," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-29, June.
    13. Zeynep Ertem & Dorrie Raymond & Lauren Ancel Meyers, 2018. "Optimal multi-source forecasting of seasonal influenza," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-16, September.
    14. Sarah C Kramer & Jeffrey Shaman, 2019. "Development and validation of influenza forecasting for 64 temperate and tropical countries," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Logan C Brooks & David C Farrow & Sangwon Hyun & Ryan J Tibshirani & Roni Rosenfeld, 2018. "Nonmechanistic forecasts of seasonal influenza with iterative one-week-ahead distributions," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-29, June.
    2. Grün, Bettina & Kosmidis, Ioannis & Zeileis, Achim, 2012. "Extended Beta Regression in R: Shaken, Stirred, Mixed, and Partitioned," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 48(i11).
    3. Li-Chu Chien, 2013. "Multiple deletion diagnostics in beta regression models," Computational Statistics, Springer, vol. 28(4), pages 1639-1661, August.
    4. Zeynep Ertem & Dorrie Raymond & Lauren Ancel Meyers, 2018. "Optimal multi-source forecasting of seasonal influenza," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-16, September.
    5. Ibrahim Musa & Hyun Woo Park & Lkhagvadorj Munkhdalai & Keun Ho Ryu, 2018. "Global Research on Syndromic Surveillance from 1993 to 2017: Bibliometric Analysis and Visualization," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
    6. Frank A. La Sorte & Alison Johnston & Toby R. Ault, 2021. "Global trends in the frequency and duration of temperature extremes," Climatic Change, Springer, vol. 166(1), pages 1-14, May.
    7. Pablo Mitnik & Sunyoung Baek, 2013. "The Kumaraswamy distribution: median-dispersion re-parameterizations for regression modeling and simulation-based estimation," Statistical Papers, Springer, vol. 54(1), pages 177-192, February.
    8. Chen, Kee Kuo & Chiu, Rong-Her & Chang, Ching-Ter, 2017. "Using beta regression to explore the relationship between service attributes and likelihood of customer retention for the container shipping industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 1-16.
    9. Yiyun Shou & Michael Smithson, 2015. "Evaluating Predictors of Dispersion: A Comparison of Dominance Analysis and Bayesian Model Averaging," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 236-256, March.
    10. Ayaz Hyder & David L Buckeridge & Brian Leung, 2013. "Predictive Validation of an Influenza Spread Model," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-20, June.
    11. Oscar Melo & Carlos Melo & Jorge Mateu, 2015. "Distance-based beta regression for prediction of mutual funds," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(1), pages 83-106, January.
    12. Souza, Tatiene C. & Cribari–Neto, Francisco, 2018. "Intelligence and religious disbelief in the United States," Intelligence, Elsevier, vol. 68(C), pages 48-57.
    13. Sangwon Chae & Sungjun Kwon & Donghyun Lee, 2018. "Predicting Infectious Disease Using Deep Learning and Big Data," IJERPH, MDPI, vol. 15(8), pages 1-20, July.
    14. Cepeda-Cuervo Edilberto & Garrido Liliana, 2015. "Bayesian beta regression models with joint mean and dispersion modeling," Monte Carlo Methods and Applications, De Gruyter, vol. 21(1), pages 49-58, March.
    15. Artur J. Lemonte & Germán Moreno-Arenas, 2020. "On a heavy-tailed parametric quantile regression model for limited range response variables," Computational Statistics, Springer, vol. 35(1), pages 379-398, March.
    16. Edouard Civel & Nathaly Cruz-Garcia, 2018. "Green, yellow or red lemons? Framed field experiment on houses energy labels perception," Working Papers hal-04141696, HAL.
    17. Edouard Civel & Nathaly Cruz, 2018. "Green, yellow or red lemons? Artefactual field experiment on houses energy labels perception," Working Papers 1809, Chaire Economie du climat.
    18. Collier, Benjamin, 2013. "Exclusive finance: How unmanaged systemic risk continues to limit financial services for the poor in a booming sector," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150433, Agricultural and Applied Economics Association.
    19. Gobinda Chowdhury & Kushwanth Koya & Pete Philipson, 2016. "Measuring the Impact of Research: Lessons from the UK’s Research Excellence Framework 2014," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-15, June.
    20. Teresa K Yamana & Sasikiran Kandula & Jeffrey Shaman, 2017. "Individual versus superensemble forecasts of seasonal influenza outbreaks in the United States," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-17, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.