IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0247456.html
   My bibliography  Save this article

Mathematical modeling of COVID-19 transmission dynamics in Uganda: Implications of complacency and early easing of lockdown

Author

Listed:
  • Joseph Y T Mugisha
  • Joseph Ssebuliba
  • Juliet N Nakakawa
  • Cliff R Kikawa
  • Amos Ssematimba

Abstract

Background: Uganda has a unique set up comprised of resource-constrained economy, social-economic challenges, politically diverse regional neighborhood and home to long-standing refuge crisis that comes from long and protracted conflicts of the great lakes. The devastation of the on-going global pandemic outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is likely to be escalated by these circumstances with expectations of the impact of the disease being severe. Materials and methods: In this study, we formulate a mathematical model that incorporates the currently known disease characteristics and tracks various intervention measures that the government of Uganda has implemented since the reporting of the first case in March 2020. We then evaluate these measures to understand levels of responsiveness and adherence to standard operating procedures and quantify their impact on the disease burden. Novel in this model was the unique aspect of modeling the trace-and-isolate protocol in which some of the latently infected individuals tested positive while in strict isolation centers thereby reducing their infectious period. Results: The study findings show that even with elimination of all imported cases at any given time it would take up to nine months to rid Uganda of the disease. The findings also show that the optimal timing of easing of lockdowns while mitigating the possibility of re-emergence of a second epidemic wave requires avoiding the scenario of releasing too-many-too-soon. It is even more worrying that enhancing contact tracing would only affect the magnitude and timing of the second wave but cannot prevent it altogether. Conclusion: We conclude that, given the prevailing circumstances, a phased-out lifting of lockdown measures, minimization of COVID-19 transmissibility within hospital settings, elimination of recruitment of infected individuals as well as enhanced contact tracing would be key to preventing overwhelming of the healthcare system that would come with dire consequences.

Suggested Citation

  • Joseph Y T Mugisha & Joseph Ssebuliba & Juliet N Nakakawa & Cliff R Kikawa & Amos Ssematimba, 2021. "Mathematical modeling of COVID-19 transmission dynamics in Uganda: Implications of complacency and early easing of lockdown," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-16, February.
  • Handle: RePEc:plo:pone00:0247456
    DOI: 10.1371/journal.pone.0247456
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0247456
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0247456&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0247456?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carol Y. Lin, 2008. "Modeling Infectious Diseases in Humans and Animals by KEELING, M. J. and ROHANI, P," Biometrics, The International Biometric Society, vol. 64(3), pages 993-993, September.
    2. Lalwani, Soniya & Sahni, Gunjan & Mewara, Bhawna & Kumar, Rajesh, 2020. "Predicting optimal lockdown period with parametric approach using three-phase maturation SIRD model for COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tyagi, Swati & Martha, Subash C. & Abbas, Syed & Debbouche, Amar, 2021. "Mathematical modeling and analysis for controlling the spread of infectious diseases," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    2. Kimberly M. Thompson, 2016. "Evolution and Use of Dynamic Transmission Models for Measles and Rubella Risk and Policy Analysis," Risk Analysis, John Wiley & Sons, vol. 36(7), pages 1383-1403, July.
    3. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    4. De Martino, Giuseppe & Spina, Serena, 2015. "Exploiting the time-dynamics of news diffusion on the Internet through a generalized Susceptible–Infected model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 634-644.
    5. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    6. Christel Kamp & Mathieu Moslonka-Lefebvre & Samuel Alizon, 2013. "Epidemic Spread on Weighted Networks," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-10, December.
    7. Guido M. Kuersteiner & Ingmar R. Prucha, 2020. "Dynamic Spatial Panel Models: Networks, Common Shocks, and Sequential Exogeneity," Econometrica, Econometric Society, vol. 88(5), pages 2109-2146, September.
    8. Moritz Kersting & Andreas Bossert & Leif Sörensen & Benjamin Wacker & Jan Chr. Schlüter, 2021. "Predicting effectiveness of countermeasures during the COVID-19 outbreak in South Africa using agent-based simulation," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-15, December.
    9. Ofosuhene O Apenteng & Noor Azina Ismail, 2014. "The Impact of the Wavelet Propagation Distribution on SEIRS Modeling with Delay," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-9, June.
    10. Miguel Navascués & Costantino Budroni & Yelena Guryanova, 2021. "Disease control as an optimization problem," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-32, September.
    11. Frank Daumann & Florian Follert & Werner Gleißner & Endre Kamarás & Chantal Naumann, 2021. "Political Decision Making in the COVID-19 Pandemic: The Case of Germany from the Perspective of Risk Management," IJERPH, MDPI, vol. 19(1), pages 1-23, December.
    12. M Gabriela M Gomes & Marc Lipsitch & Andrew R Wargo & Gael Kurath & Carlota Rebelo & Graham F Medley & Antonio Coutinho, 2014. "A Missing Dimension in Measures of Vaccination Impacts," PLOS Pathogens, Public Library of Science, vol. 10(3), pages 1-3, March.
    13. Asamoah, Joshua Kiddy K. & Owusu, Mark A. & Jin, Zhen & Oduro, F. T. & Abidemi, Afeez & Gyasi, Esther Opoku, 2020. "Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    14. Wiriya Mahikul & Somkid Kripattanapong & Piya Hanvoravongchai & Aronrag Meeyai & Sopon Iamsirithaworn & Prasert Auewarakul & Wirichada Pan-ngum, 2020. "Contact Mixing Patterns and Population Movement among Migrant Workers in an Urban Setting in Thailand," IJERPH, MDPI, vol. 17(7), pages 1-11, March.
    15. Carnehl, Christoph & Fukuda, Satoshi & Kos, Nenad, 2023. "Epidemics with behavior," Journal of Economic Theory, Elsevier, vol. 207(C).
    16. Sterck, Olivier, 2016. "Natural resources and the spread of HIV/AIDS: Curse or blessing?," Social Science & Medicine, Elsevier, vol. 150(C), pages 271-278.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0247456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.