IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v138y2020ics0960077920303386.html
   My bibliography  Save this article

Predicting optimal lockdown period with parametric approach using three-phase maturation SIRD model for COVID-19 pandemic

Author

Listed:
  • Lalwani, Soniya
  • Sahni, Gunjan
  • Mewara, Bhawna
  • Kumar, Rajesh

Abstract

This paper proposes a three-phase Susceptible-Infected-Recovered-Dead (3P-SIRD) model to calculate an optimal lockdown period for some specific geographical regions that will be favorable to break not only the transmission chain but also will help country’s economy to recover and support infrastructure in a fight against COVID-19. Proposed model is novel since it additionally includes parameters i.e. silent carriers, sociability of newly infected person and unregistered died coronavirus infected people along with the infection rate, suspected rate and death rate. These parameters contribute a lot to figure out the more clear model, along with essential parameters. The model takes the testing rate of suspected people into consideration and this rate varies with respect to phase of the epidemic growth. Proposed 3P-SIRD model is divided into three-phases based on the awareness and sustainability of disease. Time is divided into different periods as rate of infection and recovery fluctuates region to region. The model is tested on China data and is efficient enough to propose a model very close to their actual figures of infected people, recovered people, died and active cases. The model predicts the optimal lockdown period as 73 days for China which is very close to their actual lockdown period (77 days). Further, the model is implemented to predict the optimal lockdown period of India and Italy.

Suggested Citation

  • Lalwani, Soniya & Sahni, Gunjan & Mewara, Bhawna & Kumar, Rajesh, 2020. "Predicting optimal lockdown period with parametric approach using three-phase maturation SIRD model for COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
  • Handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920303386
    DOI: 10.1016/j.chaos.2020.109939
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920303386
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109939?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fanelli, Duccio & Piazza, Francesco, 2020. "Analysis and forecast of COVID-19 spreading in China, Italy and France," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    RePEc Biblio mentions

    As found on the RePEc Biblio, the curated bibliography for Economics:
    1. > Economics of Welfare > Health Economics > Economics of Pandemics > Specific pandemics > Covid-19 > Health > Distancing and Lockdown > Optimal policy

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Freire-Flores, Danton & Llanovarced-Kawles, Nyna & Sanchez-Daza, Anamaria & Olivera-Nappa, Álvaro, 2021. "On the heterogeneous spread of COVID-19 in Chile," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    2. Ghanbari, Behzad, 2020. "On forecasting the spread of the COVID-19 in Iran: The second wave," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Joseph Y T Mugisha & Joseph Ssebuliba & Juliet N Nakakawa & Cliff R Kikawa & Amos Ssematimba, 2021. "Mathematical modeling of COVID-19 transmission dynamics in Uganda: Implications of complacency and early easing of lockdown," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-16, February.
    4. Asamoah, Joshua Kiddy K. & Owusu, Mark A. & Jin, Zhen & Oduro, F. T. & Abidemi, Afeez & Gyasi, Esther Opoku, 2020. "Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singhal, Amit & Singh, Pushpendra & Lall, Brejesh & Joshi, Shiv Dutt, 2020. "Modeling and prediction of COVID-19 pandemic using Gaussian mixture model," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    2. Cooper, Ian & Mondal, Argha & Antonopoulos, Chris G., 2020. "Dynamic tracking with model-based forecasting for the spread of the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Huang, Yubo & Wu, Yan & Zhang, Weidong, 2020. "Comprehensive identification and isolation policies have effectively suppressed the spread of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    4. Chakraborty, Tanujit & Ghosh, Indrajit, 2020. "Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    5. Gaetano Perone, 2020. "An ARIMA model to forecast the spread and the final size of COVID-2019 epidemic in Italy," Health, Econometrics and Data Group (HEDG) Working Papers 20/07, HEDG, c/o Department of Economics, University of York.
    6. Salgotra, Rohit & Gandomi, Mostafa & Gandomi, Amir H., 2020. "Evolutionary modelling of the COVID-19 pandemic in fifteen most affected countries," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    7. Bimal Kumar Mishra, 2022. "Stochastic models on the transmission of novel COVID-19," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 599-603, April.
    8. Han, Zhimin & Wang, Yi & Cao, Jinde, 2023. "Impact of contact heterogeneity on initial growth behavior of an epidemic: Complex network-based approach," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    9. Ashwin Muniyappan & Balamuralitharan Sundarappan & Poongodi Manoharan & Mounir Hamdi & Kaamran Raahemifar & Sami Bourouis & Vijayakumar Varadarajan, 2022. "Stability and Numerical Solutions of Second Wave Mathematical Modeling on COVID-19 and Omicron Outbreak Strategy of Pandemic: Analytical and Error Analysis of Approximate Series Solutions by Using HPM," Mathematics, MDPI, vol. 10(3), pages 1-27, January.
    10. Imdad, Kashif & Sahana, Mehebub & Rana, Md Juel & Haque, Ismail & Patel, Priyank Pravin & Pramanik, Malay, 2020. "The COVID-19 pandemic's footprint in India: An assessment on the district-level susceptibility and vulnerability," MPRA Paper 100727, University Library of Munich, Germany.
    11. Ghanbari, Behzad, 2020. "On forecasting the spread of the COVID-19 in Iran: The second wave," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    12. Gaetano Perone, 2022. "Comparison of ARIMA, ETS, NNAR, TBATS and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 23(6), pages 917-940, August.
    13. Eryarsoy, Enes & Delen, Dursun & Davazdahemami, Behrooz & Topuz, Kazim, 2021. "A novel diffusion-based model for estimating cases, and fatalities in epidemics: The case of COVID-19," Journal of Business Research, Elsevier, vol. 124(C), pages 163-178.
    14. Hildie Leung & Daniel T. L. Shek & Diya Dou, 2021. "Evaluation of Service-Learning in Project WeCan under COVID-19 in a Chinese Context," IJERPH, MDPI, vol. 18(7), pages 1-17, March.
    15. Luca Bonacini & Giovanni Gallo & Fabrizio Patriarca, 2021. "Identifying policy challenges of COVID-19 in hardly reliable data and judging the success of lockdown measures," Journal of Population Economics, Springer;European Society for Population Economics, vol. 34(1), pages 275-301, January.
    16. Shiyu Liu & Ou Liu & Junyang Chen, 2023. "A Review on Business Analytics: Definitions, Techniques, Applications and Challenges," Mathematics, MDPI, vol. 11(4), pages 1-20, February.
    17. Michela Baccini & Giulia Cereda & Cecilia Viscardi, 2021. "The first wave of the SARS-CoV-2 epidemic in Tuscany (Italy): A SI2R2D compartmental model with uncertainty evaluation," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-23, April.
    18. Pelinovsky, Efim & Kurkin, Andrey & Kurkina, Oxana & Kokoulina, Maria & Epifanova, Anastasia, 2020. "Logistic equation and COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    19. Michał Wieczorek & Jakub Siłka & Dawid Połap & Marcin Woźniak & Robertas Damaševičius, 2020. "Real-time neural network based predictor for cov19 virus spread," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-18, December.
    20. Perone, G., 2020. "Comparison of ARIMA, ETS, NNAR and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy," Health, Econometrics and Data Group (HEDG) Working Papers 20/18, HEDG, c/o Department of Economics, University of York.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920303386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.