IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0098288.html
   My bibliography  Save this article

The Impact of the Wavelet Propagation Distribution on SEIRS Modeling with Delay

Author

Listed:
  • Ofosuhene O Apenteng
  • Noor Azina Ismail

Abstract

Previous models of disease spread involving delay have used basic SIR (susceptible – infectious – recovery) formulae and approaches. This paper demonstrates how time-varying SEIRS (S – exposed – I – R – S) models can be extended with delay to produce wave propagations that simulate periodic wave fronts of disease spread in the context of population movements. The model also takes into account the natural mortality associated with the disease spread. Understanding the delay of an infectious disease is critical when attempting to predict where and how fast the disease will propagate. We use cellular automata to model the delay and its effect on the spread of infectious diseases where population movement occurs. We illustrate an approach using wavelet transform analysis to understand the impact of the delay on the spread of infectious diseases. The results indicate that including delay provides novel ways to understand the effects of migration and population movement on disease spread.

Suggested Citation

  • Ofosuhene O Apenteng & Noor Azina Ismail, 2014. "The Impact of the Wavelet Propagation Distribution on SEIRS Modeling with Delay," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-9, June.
  • Handle: RePEc:plo:pone00:0098288
    DOI: 10.1371/journal.pone.0098288
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0098288
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0098288&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0098288?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carol Y. Lin, 2008. "Modeling Infectious Diseases in Humans and Animals by KEELING, M. J. and ROHANI, P," Biometrics, The International Biometric Society, vol. 64(3), pages 993-993, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Folorunso Obayemi Temitope Obasuyi & Rajah Rasiah & Santha Chenayah, 2020. "Identification of Measurement Variables for Understanding Vulnerability to Education Inequality in Developing Countries: A Conceptual Article," SAGE Open, , vol. 10(2), pages 21582440209, May.
    2. Sharma, Natasha & Verma, Atul Kumar & Gupta, Arvind Kumar, 2021. "Spatial network based model forecasting transmission and control of COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    3. Mahajan, Shveta & Kumar, Deepak & Verma, Atul Kumar & Sharma, Natasha, 2023. "Dynamic analysis of modified SEIR epidemic model with time delay in geographical networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    4. Sharma, Natasha & Gupta, Arvind Kumar, 2017. "Impact of time delay on the dynamics of SEIR epidemic model using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 114-125.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    2. De Martino, Giuseppe & Spina, Serena, 2015. "Exploiting the time-dynamics of news diffusion on the Internet through a generalized Susceptible–Infected model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 634-644.
    3. Guido M. Kuersteiner & Ingmar R. Prucha, 2020. "Dynamic Spatial Panel Models: Networks, Common Shocks, and Sequential Exogeneity," Econometrica, Econometric Society, vol. 88(5), pages 2109-2146, September.
    4. M Gabriela M Gomes & Marc Lipsitch & Andrew R Wargo & Gael Kurath & Carlota Rebelo & Graham F Medley & Antonio Coutinho, 2014. "A Missing Dimension in Measures of Vaccination Impacts," PLOS Pathogens, Public Library of Science, vol. 10(3), pages 1-3, March.
    5. Sterck, Olivier, 2016. "Natural resources and the spread of HIV/AIDS: Curse or blessing?," Social Science & Medicine, Elsevier, vol. 150(C), pages 271-278.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0098288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.