IDEAS home Printed from https://ideas.repec.org/a/wly/emetrp/v88y2020i5p2109-2146.html
   My bibliography  Save this article

Dynamic Spatial Panel Models: Networks, Common Shocks, and Sequential Exogeneity

Author

Listed:
  • Guido M. Kuersteiner
  • Ingmar R. Prucha

Abstract

This paper considers a class of generalized methods of moments (GMM) estimators for general dynamic panel models, allowing for weakly exogenous covariates and cross‐sectional dependence due to spatial lags, unspecified common shocks, and time‐varying interactive effects. We significantly expand the scope of the existing literature by allowing for endogenous time‐varying spatial weight matrices without imposing explicit structural assumptions on how the weights are formed. An important area of application is in social interaction and network models where our specification can accommodate data dependent network formation. We consider an exemplary social interaction model and show how identification of the interaction parameters is achieved through a combination of linear and quadratic moment conditions. For the general setup we develop an orthogonal forward differencing transformation to aid in the estimation of factor components while maintaining orthogonality of moment conditions. This is an important ingredient to a tractable asymptotic distribution of our estimators. In general, the asymptotic distribution of our estimators is found to be mixed normal due to random norming. However, the asymptotic distribution of our test statistics is still chi‐square.

Suggested Citation

  • Guido M. Kuersteiner & Ingmar R. Prucha, 2020. "Dynamic Spatial Panel Models: Networks, Common Shocks, and Sequential Exogeneity," Econometrica, Econometric Society, vol. 88(5), pages 2109-2146, September.
  • Handle: RePEc:wly:emetrp:v:88:y:2020:i:5:p:2109-2146
    DOI: 10.3982/ECTA13660
    as

    Download full text from publisher

    File URL: https://doi.org/10.3982/ECTA13660
    Download Restriction: no

    File URL: https://libkey.io/10.3982/ECTA13660?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    2. Bramoulle, Yann & Galeotti, Andrea & Rogers, Brian (ed.), 2016. "The Oxford Handbook of the Economics of Networks," OUP Catalogue, Oxford University Press, number 9780199948277.
    3. Peter C. B. Phillips & Donggyu Sul, 2007. "Transition Modeling and Econometric Convergence Tests," Econometrica, Econometric Society, vol. 75(6), pages 1771-1855, November.
    4. Yu, Jihai & de Jong, Robert & Lee, Lung-fei, 2008. "Quasi-maximum likelihood estimators for spatial dynamic panel data with fixed effects when both n and T are large," Journal of Econometrics, Elsevier, vol. 146(1), pages 118-134, September.
    5. Yu, Jihai & de Jong, Robert & Lee, Lung-fei, 2012. "Estimation for spatial dynamic panel data with fixed effects: The case of spatial cointegration," Journal of Econometrics, Elsevier, vol. 167(1), pages 16-37.
    6. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    7. Guido M. Kuersteiner & Ingmar R. Prucha, 2020. "Dynamic Spatial Panel Models: Networks, Common Shocks, and Sequential Exogeneity," Econometrica, Econometric Society, vol. 88(5), pages 2109-2146, September.
    8. Hayashi, Fumio & Sims, Christopher A, 1983. "Nearly Efficient Estimation of Time Series Models with Predetermined, but Not Exogenous, Instruments," Econometrica, Econometric Society, vol. 51(3), pages 783-798, May.
    9. Elhorst, J. Paul, 2010. "Dynamic panels with endogenous interaction effects when T is small," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 272-282, September.
    10. Zhenlin Yang, 2014. "Initial-Condition Free Estimation of Fixed Effects Dynamic Panel Data Models," Working Papers 16-2014, Singapore Management University, School of Economics.
    11. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
    12. Paul Goldsmith-Pinkham & Guido W. Imbens, 2013. "Social Networks and the Identification of Peer Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 253-264, July.
    13. Hyungsik Roger Moon & Martin Weidner, 2015. "Linear Regression for Panel With Unknown Number of Factors as Interactive Fixed Effects," Econometrica, Econometric Society, vol. 83(4), pages 1543-1579, July.
    14. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    15. Donald W. K. Andrews, 2005. "Cross-Section Regression with Common Shocks," Econometrica, Econometric Society, vol. 73(5), pages 1551-1585, September.
    16. Yann Bramoullé & Andrea Galeotti & Brian Rogers, 2016. "The Oxford Handbook of the Economics of Networks," Post-Print hal-01447842, HAL.
    17. White,Halbert, 1996. "Estimation, Inference and Specification Analysis," Cambridge Books, Cambridge University Press, number 9780521574464, September.
    18. Moon, Hyungsik Roger & Weidner, Martin, 2017. "Dynamic Linear Panel Regression Models With Interactive Fixed Effects," Econometric Theory, Cambridge University Press, vol. 33(1), pages 158-195, February.
    19. Honoré,Bo & Pakes,Ariel & Piazzesi,Monika & Samuelson,Larry (ed.), 2017. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9781316510520, October.
    20. Pesaran, M. Hashem & Tosetti, Elisa, 2011. "Large panels with common factors and spatial correlation," Journal of Econometrics, Elsevier, vol. 161(2), pages 182-202, April.
    21. Holtz-Eakin, Douglas & Newey, Whitney & Rosen, Harvey S, 1988. "Estimating Vector Autoregressions with Panel Data," Econometrica, Econometric Society, vol. 56(6), pages 1371-1395, November.
    22. Bai, Jushan, 2024. "Likelihood approach to dynamic panel models with interactive effects," Journal of Econometrics, Elsevier, vol. 240(1).
    23. Lee, Lung-fei, 2007. "The method of elimination and substitution in the GMM estimation of mixed regressive, spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 140(1), pages 155-189, September.
    24. Scott E. Carrell & Bruce I. Sacerdote & James E. West, 2013. "From Natural Variation to Optimal Policy? The Importance of Endogenous Peer Group Formation," Econometrica, Econometric Society, vol. 81(3), pages 855-882, May.
    25. Lee, Lung-fei & Yu, Jihai, 2014. "Efficient GMM estimation of spatial dynamic panel data models with fixed effects," Journal of Econometrics, Elsevier, vol. 180(2), pages 174-197.
    26. Yann Bramoullé & Andrea Galeotti & Brian Rogers, 2016. "The Oxford Handbook of the Economics of Networks," Post-Print hal-03572533, HAL.
    27. Liu, Xiaodong & Lee, Lung-fei, 2010. "GMM estimation of social interaction models with centrality," Journal of Econometrics, Elsevier, vol. 159(1), pages 99-115, November.
    28. Gao, Jiti & Hong, Yongmiao, 2007. "Central limit theorems for weighted quadratic forms of dependent processes with applications in specification testing," MPRA Paper 11977, University Library of Munich, Germany, revised Dec 2007.
    29. Kelejian, Harry H. & Prucha, Ingmar R., 2002. "2SLS and OLS in a spatial autoregressive model with equal spatial weights," Regional Science and Urban Economics, Elsevier, vol. 32(6), pages 691-707, November.
    30. Kazuhiko Hayakawa, 2006. "The Asymptotic Properties of the System GMM Estimator in Dynamic Panel Data Models When Both N and T are Large," Hi-Stat Discussion Paper Series d05-129, Institute of Economic Research, Hitotsubashi University.
    31. Hayakawa, Kazuhiko, 2015. "The Asymptotic Properties Of The System Gmm Estimator In Dynamic Panel Data Models When Both N And T Are Large," Econometric Theory, Cambridge University Press, vol. 31(3), pages 647-667, June.
    32. Qu, Xi & Lee, Lung-fei & Yu, Jihai, 2017. "QML estimation of spatial dynamic panel data models with endogenous time varying spatial weights matrices," Journal of Econometrics, Elsevier, vol. 197(2), pages 173-201.
    33. Honoré,Bo & Pakes,Ariel & Piazzesi,Monika & Samuelson,Larry (ed.), 2017. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9781108400022, October.
    34. H. Kelejian, Harry & Prucha, Ingmar R., 2001. "On the asymptotic distribution of the Moran I test statistic with applications," Journal of Econometrics, Elsevier, vol. 104(2), pages 219-257, September.
    35. Xiaoyi Han & Lung-Fei Lee, 2016. "Bayesian Analysis of Spatial Panel Autoregressive Models With Time-Varying Endogenous Spatial Weight Matrices, Common Factors, and Random Coefficients," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 642-660, October.
    36. Chudik, Alexander & Pesaran, M. Hashem, 2015. "Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors," Journal of Econometrics, Elsevier, vol. 188(2), pages 393-420.
    37. Ahn, Seung C. & Lee, Young H. & Schmidt, Peter, 2013. "Panel data models with multiple time-varying individual effects," Journal of Econometrics, Elsevier, vol. 174(1), pages 1-14.
    38. Bryan S. Graham, 2016. "Homophily and transitivity in dynamic network formation," CeMMAP working papers CWP16/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    39. Kuersteiner, Guido M. & Prucha, Ingmar R., 2013. "Limit theory for panel data models with cross sectional dependence and sequential exogeneity," Journal of Econometrics, Elsevier, vol. 174(2), pages 107-126.
    40. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    41. Honoré,Bo & Pakes,Ariel & Piazzesi,Monika & Samuelson,Larry (ed.), 2017. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9781108400008, October.
    42. Charles F. Manski, 1993. "Identification of Endogenous Social Effects: The Reflection Problem," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(3), pages 531-542.
    43. Shi, Wei & Lee, Lung-fei, 2018. "A spatial panel data model with time varying endogenous weights matrices and common factors," Regional Science and Urban Economics, Elsevier, vol. 72(C), pages 6-34.
    44. Kelejian, Harry H. & Piras, Gianfranco, 2014. "Estimation of spatial models with endogenous weighting matrices, and an application to a demand model for cigarettes," Regional Science and Urban Economics, Elsevier, vol. 46(C), pages 140-149.
    45. Carol Y. Lin, 2008. "Modeling Infectious Diseases in Humans and Animals by KEELING, M. J. and ROHANI, P," Biometrics, The International Biometric Society, vol. 64(3), pages 993-993, September.
    46. Bai, Jushan & Ng, Serena, 2006. "Evaluating latent and observed factors in macroeconomics and finance," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 507-537.
    47. Peter C. B. Phillips & Donggyu Sul, 2003. "Dynamic panel estimation and homogeneity testing under cross section dependence *," Econometrics Journal, Royal Economic Society, vol. 6(1), pages 217-259, June.
    48. Patacchini, Eleonora & Rainone, Edoardo & Zenou, Yves, 2017. "Heterogeneous peer effects in education," Journal of Economic Behavior & Organization, Elsevier, vol. 134(C), pages 190-227.
    49. Honoré,Bo & Pakes,Ariel & Piazzesi,Monika & Samuelson,Larry (ed.), 2017. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9781108414982, October.
    50. Tiziano Arduini & Eleonora Patacchini & Edoardo Rainone, 2015. "Parametric and Semiparametric IV Estimation of Network Models with Selectivity," EIEF Working Papers Series 1509, Einaudi Institute for Economics and Finance (EIEF), revised Oct 2015.
    51. Kapoor, Mudit & Kelejian, Harry H. & Prucha, Ingmar R., 2007. "Panel data models with spatially correlated error components," Journal of Econometrics, Elsevier, vol. 140(1), pages 97-130, September.
    52. Ahn, Seung Chan & Hoon Lee, Young & Schmidt, Peter, 2001. "GMM estimation of linear panel data models with time-varying individual effects," Journal of Econometrics, Elsevier, vol. 101(2), pages 219-255, April.
    53. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
    54. repec:hal:journl:peer-00796743 is not listed on IDEAS
    55. Harry H. Kelejian & Ingmar R. Prucha & Yevgeny Yuzefovich, 2006. "Estimation Problems In Models With Spatial Weighting Matrices Which Have Blocks Of Equal Elements," Journal of Regional Science, Wiley Blackwell, vol. 46(3), pages 507-515, August.
    56. Lee, Lung-fei, 2007. "GMM and 2SLS estimation of mixed regressive, spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 137(2), pages 489-514, April.
    57. Chih‐Sheng Hsieh & Lung Fei Lee, 2016. "A Social Interactions Model with Endogenous Friendship Formation and Selectivity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(2), pages 301-319, March.
    58. Lee, Lung-fei & Liu, Xiaodong, 2010. "Efficient Gmm Estimation Of High Order Spatial Autoregressive Models With Autoregressive Disturbances," Econometric Theory, Cambridge University Press, vol. 26(1), pages 187-230, February.
    59. Lung-fei Lee & Xiaodong Liu & Xu Lin, 2010. "Specification and estimation of social interaction models with network structures," Econometrics Journal, Royal Economic Society, vol. 13(2), pages 145-176, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yann Bramoullé & Habiba Djebbari & Bernard Fortin, 2020. "Peer Effects in Networks: A Survey," Annual Review of Economics, Annual Reviews, vol. 12(1), pages 603-629, August.
    2. Su, Liangjun & Yang, Zhenlin, 2015. "QML estimation of dynamic panel data models with spatial errors," Journal of Econometrics, Elsevier, vol. 185(1), pages 230-258.
    3. Kuersteiner, Guido M. & Prucha, Ingmar R. & Zeng, Ying, 2023. "Efficient peer effects estimators with group effects," Journal of Econometrics, Elsevier, vol. 235(2), pages 2155-2194.
    4. Bai, Jushan & Li, Kunpeng, 2021. "Dynamic spatial panel data models with common shocks," Journal of Econometrics, Elsevier, vol. 224(1), pages 134-160.
    5. Vasilis Sarafidis & Tom Wansbeek, 2012. "Cross-Sectional Dependence in Panel Data Analysis," Econometric Reviews, Taylor & Francis Journals, vol. 31(5), pages 483-531, September.
    6. Kuersteiner, Guido M. & Prucha, Ingmar R., 2013. "Limit theory for panel data models with cross sectional dependence and sequential exogeneity," Journal of Econometrics, Elsevier, vol. 174(2), pages 107-126.
    7. Liza Charroin, 2018. "Homophily, peer effects and dishonesty," Post-Print halshs-01993618, HAL.
    8. Cynthia Fan Yang, 2021. "Common factors and spatial dependence: an application to US house prices," Econometric Reviews, Taylor & Francis Journals, vol. 40(1), pages 14-50, January.
    9. Ye, Xiaoqing & Xu, Juan & Wu, Xiangjun, 2018. "Estimation of an unbalanced panel data Tobit model with interactive effects," Journal of choice modelling, Elsevier, vol. 28(C), pages 108-123.
    10. Pesaran, M. Hashem & Tosetti, Elisa, 2011. "Large panels with common factors and spatial correlation," Journal of Econometrics, Elsevier, vol. 161(2), pages 182-202, April.
    11. Wei Shi & Lung-fei Lee, 2018. "The effects of gun control on crimes: a spatial interactive fixed effects approach," Empirical Economics, Springer, vol. 55(1), pages 233-263, August.
    12. Lee, Lung-fei & Yu, Jihai, 2014. "Efficient GMM estimation of spatial dynamic panel data models with fixed effects," Journal of Econometrics, Elsevier, vol. 180(2), pages 174-197.
    13. Lina Lu, 2017. "Simultaneous Spatial Panel Data Models with Common Shocks," Supervisory Research and Analysis Working Papers RPA 17-3, Federal Reserve Bank of Boston.
    14. Boucher, Vincent & Dedewanou, F. Antoine & Dufays, Arnaud, 2022. "Peer-induced beliefs regarding college participation," Economics of Education Review, Elsevier, vol. 90(C).
    15. Guowei Cui & Vasilis Sarafidis & Takashi Yamagata, 2023. "IV estimation of spatial dynamic panels with interactive effects: large sample theory and an application on bank attitude towards risk," The Econometrics Journal, Royal Economic Society, vol. 26(2), pages 124-146.
    16. Qu, Xi & Lee, Lung-fei & Yang, Chao, 2021. "Estimation of a SAR model with endogenous spatial weights constructed by bilateral variables," Journal of Econometrics, Elsevier, vol. 221(1), pages 180-197.
    17. Juodis, Artūras & Sarafidis, Vasilis, 2022. "An incidental parameters free inference approach for panels with common shocks," Journal of Econometrics, Elsevier, vol. 229(1), pages 19-54.
    18. Shi, Wei & Lee, Lung-fei, 2017. "Spatial dynamic panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 197(2), pages 323-347.
    19. Su, Liangjun & Jin, Sainan & Zhang, Yonghui, 2015. "Specification test for panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 186(1), pages 222-244.
    20. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.

    More about this item

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:emetrp:v:88:y:2020:i:5:p:2109-2146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.