IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v438y2015icp634-644.html
   My bibliography  Save this article

Exploiting the time-dynamics of news diffusion on the Internet through a generalized Susceptible–Infected model

Author

Listed:
  • De Martino, Giuseppe
  • Spina, Serena

Abstract

We construct a news spreading model with a time dependent contact rate which generalizes the classical Susceptible–Infected model of epidemiology. In particular, we are interested on the time-dynamics of the sharing and diffusion process of news on the Internet. We focus on the counting process describing the number of connections to a given website, characterizing the cumulative density function of its inter-arrival times. Moreover, starting from the general form of the finite dimensional distribution of the process, we determine a formula for the time-variable rate of the connections and establish its relationship with the probability density function of the interarrival times. We finally show the effectiveness of our theoretical framework analyzing a real-world dataset, the Memetracker dataset, whose parameters characterizing the diffusion process are determined.

Suggested Citation

  • De Martino, Giuseppe & Spina, Serena, 2015. "Exploiting the time-dynamics of news diffusion on the Internet through a generalized Susceptible–Infected model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 634-644.
  • Handle: RePEc:eee:phsmap:v:438:y:2015:i:c:p:634-644
    DOI: 10.1016/j.physa.2015.07.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437115006317
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2015.07.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bettencourt, Luís M.A. & Cintrón-Arias, Ariel & Kaiser, David I. & Castillo-Chávez, Carlos, 2006. "The power of a good idea: Quantitative modeling of the spread of ideas from epidemiological models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 513-536.
    2. Zhao, Laijun & Cui, Hongxin & Qiu, Xiaoyan & Wang, Xiaoli & Wang, Jiajia, 2013. "SIR rumor spreading model in the new media age," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 995-1003.
    3. Wang, Jiajia & Zhao, Laijun & Huang, Rongbing, 2014. "SIRaRu rumor spreading model in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 43-55.
    4. Carol Y. Lin, 2008. "Modeling Infectious Diseases in Humans and Animals by KEELING, M. J. and ROHANI, P," Biometrics, The International Biometric Society, vol. 64(3), pages 993-993, September.
    5. Ciro Cattuto & Wouter Van den Broeck & Alain Barrat & Vittoria Colizza & Jean-François Pinton & Alessandro Vespignani, 2010. "Dynamics of Person-to-Person Interactions from Distributed RFID Sensor Networks," PLOS ONE, Public Library of Science, vol. 5(7), pages 1-9, July.
    6. Mauro Politi & Taisei Kaizoji & Enrico Scalas, 2011. "Full characterization of the fractional Poisson process," Papers 1104.4234, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Di Crescenzo & Paola Paraggio & Serena Spina, 2023. "Stochastic Growth Models for the Spreading of Fake News," Mathematics, MDPI, vol. 11(16), pages 1-23, August.
    2. Maria Gamboa & Maria Jesus Lopez-Herrero, 2018. "On the Number of Periodic Inspections During Outbreaks of Discrete-Time Stochastic SIS Epidemic Models," Mathematics, MDPI, vol. 6(8), pages 1-13, July.
    3. Giorno, Virginia & Spina, Serena, 2016. "Rumor spreading models with random denials," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 569-576.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Dandan & Ma, Jing, 2017. "How the government’s punishment and individual’s sensitivity affect the rumor spreading in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 284-292.
    2. Jia, Pingqi & Wang, Chao & Zhang, Gaoyu & Ma, Jianfeng, 2019. "A rumor spreading model based on two propagation channels in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 342-353.
    3. Lu, Peng, 2019. "Heterogeneity, judgment, and social trust of agents in rumor spreading," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 447-461.
    4. Yao, Yao & Xiao, Xi & Zhang, Chengping & Dou, Changsheng & Xia, Shutao, 2019. "Stability analysis of an SDILR model based on rumor recurrence on social media," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    5. Nwaibeh, E.A. & Chikwendu, C.R., 2023. "A deterministic model of the spread of scam rumor and its numerical simulations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 111-129.
    6. Huo, Liang’an & Jiang, Jiehui & Gong, Sixing & He, Bing, 2016. "Dynamical behavior of a rumor transmission model with Holling-type II functional response in emergency event," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 228-240.
    7. Su, Qiang & Huang, Jiajia & Zhao, Xiande, 2015. "An information propagation model considering incomplete reading behavior in microblog," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 55-63.
    8. Lu, Peng & Deng, Liping & Liao, Hongbing, 2019. "Conditional effects of individual judgment heterogeneity in information dissemination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 335-344.
    9. Jie, Renlong & Qiao, Jian & Xu, Genjiu & Meng, Yingying, 2016. "A study on the interaction between two rumors in homogeneous complex networks under symmetric conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 454(C), pages 129-142.
    10. Kumar, Ajay & Swarnakar, Pradip & Jaiswal, Kamya & Kurele, Ritika, 2020. "SMIR model for controlling the spread of information in social networking sites," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    11. Yu, Shuzhen & Yu, Zhiyong & Jiang, Haijun & Li, Jiarong, 2021. "Dynamical study and event-triggered impulsive control of rumor propagation model on heterogeneous social network incorporating delay," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    12. Zhuang, Yun-Bei & Chen, J.J. & Li, Zhi-hong, 2017. "Modeling the cooperative and competitive contagions in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 141-151.
    13. Zhang, Yuhuai & Zhu, Jianjun, 2018. "Stability analysis of I2S2R rumor spreading model in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 862-881.
    14. Rui, Xiaobin & Meng, Fanrong & Wang, Zhixiao & Yuan, Guan & Du, Changjiang, 2018. "SPIR: The potential spreaders involved SIR model for information diffusion in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 254-269.
    15. Dayan, Fazal & Rafiq, Muhammad & Ahmed, Nauman & Baleanu, Dumitru & Raza, Ali & Ahmad, Muhammad Ozair & Iqbal, Muhammad, 2022. "Design and numerical analysis of fuzzy nonstandard computational methods for the solution of rumor based fuzzy epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    16. Giorno, Virginia & Spina, Serena, 2016. "Rumor spreading models with random denials," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 569-576.
    17. Hu, Yuhan & Pan, Qiuhui & Hou, Wenbing & He, Mingfeng, 2018. "Rumor spreading model considering the proportion of wisemen in the crowd," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 1084-1094.
    18. Liu, Qiming & Li, Tao & Sun, Meici, 2017. "The analysis of an SEIR rumor propagation model on heterogeneous network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 372-380.
    19. Huo, Liang’an & Cheng, Yingying, 2019. "Dynamical analysis of a IWSR rumor spreading model with considering the self-growth mechanism and indiscernible degree," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    20. Wang, Zhixiao & Rui, Xiaobin & Yuan, Guan & Cui, Jingjing & Hadzibeganovic, Tarik, 2021. "Endemic information-contagion outbreaks in complex networks with potential spreaders based recurrent-state transmission dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:438:y:2015:i:c:p:634-644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.