IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0000180.html
   My bibliography  Save this article

Maximum Likelihood Estimation of the Negative Binomial Dispersion Parameter for Highly Overdispersed Data, with Applications to Infectious Diseases

Author

Listed:
  • James O Lloyd-Smith

Abstract

Background: The negative binomial distribution is used commonly throughout biology as a model for overdispersed count data, with attention focused on the negative binomial dispersion parameter, k. A substantial literature exists on the estimation of k, but most attention has focused on datasets that are not highly overdispersed (i.e., those with k≥1), and the accuracy of confidence intervals estimated for k is typically not explored. Methodology: This article presents a simulation study exploring the bias, precision, and confidence interval coverage of maximum-likelihood estimates of k from highly overdispersed distributions. In addition to exploring small-sample bias on negative binomial estimates, the study addresses estimation from datasets influenced by two types of event under-counting, and from disease transmission data subject to selection bias for successful outbreaks. Conclusions: Results show that maximum likelihood estimates of k can be biased upward by small sample size or under-reporting of zero-class events, but are not biased downward by any of the factors considered. Confidence intervals estimated from the asymptotic sampling variance tend to exhibit coverage below the nominal level, with overestimates of k comprising the great majority of coverage errors. Estimation from outbreak datasets does not increase the bias of k estimates, but can add significant upward bias to estimates of the mean. Because k varies inversely with the degree of overdispersion, these findings show that overestimation of the degree of overdispersion is very rare for these datasets.

Suggested Citation

  • James O Lloyd-Smith, 2007. "Maximum Likelihood Estimation of the Negative Binomial Dispersion Parameter for Highly Overdispersed Data, with Applications to Infectious Diseases," PLOS ONE, Public Library of Science, vol. 2(2), pages 1-8, February.
  • Handle: RePEc:plo:pone00:0000180
    DOI: 10.1371/journal.pone.0000180
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0000180
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0000180&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0000180?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. O. Lloyd-Smith & S. J. Schreiber & P. E. Kopp & W. M. Getz, 2005. "Superspreading and the effect of individual variation on disease emergence," Nature, Nature, vol. 438(7066), pages 355-359, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Afnizanfaizal Abdullah & Safaai Deris & Mohd Saberi Mohamad & Sohail Anwar, 2013. "An Improved Swarm Optimization for Parameter Estimation and Biological Model Selection," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-16, April.
    2. Stijn van Weezel, 2016. "Communal violence in the Horn of Africa following the 1998 El Niño," Working Papers 201617, School of Economics, University College Dublin.
    3. Xu, Wan & Khachatryan, Hayk, 2015. "The Role of Integrated Pest Management Practices in the U.S. Nursery Industry: A Bayesian Hierarchical Poisson Approach," 2015 Annual Meeting, January 31-February 3, 2015, Atlanta, Georgia 196808, Southern Agricultural Economics Association.
    4. Krishna K. Saha & Debaraj Sen & Chun Jin, 2012. "Profile likelihood-based confidence interval for the dispersion parameter in count data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(4), pages 765-783, August.
    5. Sileshi, Gudeta & Hailu, Girma & Nyadzi, Gerson I., 2009. "Traditional occupancy–abundance models are inadequate for zero-inflated ecological count data," Ecological Modelling, Elsevier, vol. 220(15), pages 1764-1775.
    6. Ernest Lo & Dan Vatnik & Andrea Benedetti & Robert Bourbeau, 2016. "Variance models of the last age interval and their impact on life expectancy at subnational scales," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 35(15), pages 399-454.
    7. R. S. Sparks & T. Keighley & D. Muscatello, 2011. "Optimal exponentially weighted moving average (EWMA) plans for detecting seasonal epidemics when faced with non-homogeneous negative binomial counts," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(10), pages 2165-2181.
    8. Calvin Pozderac & Brian Skinner, 2021. "Superspreading of SARS-CoV-2 in the USA," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-10, March.
    9. Hayashi, Kohta & Iijima, Hayato, 2022. "Density estimation of non-independent unmarked animals from camera traps," Ecological Modelling, Elsevier, vol. 472(C).
    10. Yunjun Zhang & Yuying Li & Lu Wang & Mingyuan Li & Xiaohua Zhou, 2020. "Evaluating Transmission Heterogeneity and Super-Spreading Event of COVID-19 in a Metropolis of China," IJERPH, MDPI, vol. 17(10), pages 1-11, May.
    11. Seth Blumberg & James O Lloyd-Smith, 2013. "Inference of R0 and Transmission Heterogeneity from the Size Distribution of Stuttering Chains," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-17, May.
    12. S. Towers & B. Amdouni & R. Cordova & K. Funderburk & C. Montalvo & M. Thakur & J. Velazquez-Molina & C. Castillo-Chavez, 2021. "The rising prevalence of weapons in unsafe arming configurations discovered in American airports," Journal of Transportation Security, Springer, vol. 14(1), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    2. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    3. Moshe B Hoshen & Anthony H Burton & Themis J V Bowcock, 2007. "Simulating disease transmission dynamics at a multi-scale level," International Journal of Microsimulation, International Microsimulation Association, vol. 1(1), pages 26-34.
    4. Luc E. Coffeng & Sake J. de Vlas, 2022. "Predicting epidemics and the impact of interventions in heterogeneous settings: Standard SEIR models are too pessimistic," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 28-35, November.
    5. Joseph B. Bak-Coleman & Ian Kennedy & Morgan Wack & Andrew Beers & Joseph S. Schafer & Emma S. Spiro & Kate Starbird & Jevin D. West, 2022. "Combining interventions to reduce the spread of viral misinformation," Nature Human Behaviour, Nature, vol. 6(10), pages 1372-1380, October.
    6. Kris V. Parag & Robin N. Thompson & Christl A. Donnelly, 2022. "Are epidemic growth rates more informative than reproduction numbers?," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 5-15, November.
    7. Thomas Ash & Antonio M. Bento & Daniel Kaffine & Akhil Rao & Ana I. Bento, 2022. "Disease-economy trade-offs under alternative epidemic control strategies," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Maarten Jan Wensink & Linda Juel Ahrenfeldt & Sören Möller, 2020. "Variability Matters," IJERPH, MDPI, vol. 18(1), pages 1-8, December.
    9. Lingcai Kong & Jinfeng Wang & Weiguo Han & Zhidong Cao, 2016. "Modeling Heterogeneity in Direct Infectious Disease Transmission in a Compartmental Model," IJERPH, MDPI, vol. 13(3), pages 1-13, February.
    10. Carolyn Ingram & Vicky Downey & Mark Roe & Yanbing Chen & Mary Archibald & Kadri-Ann Kallas & Jaspal Kumar & Peter Naughton & Cyril Onwuelazu Uteh & Alejandro Rojas-Chaves & Shibu Shrestha & Shiraz Sy, 2021. "COVID-19 Prevention and Control Measures in Workplace Settings: A Rapid Review and Meta-Analysis," IJERPH, MDPI, vol. 18(15), pages 1-26, July.
    11. Wayne M. Getz & Jean-Paul Gonzalez & Richard Salter & James Bangura & Colin Carlson & Moinya Coomber & Eric Dougherty & David Kargbo & Nathan D. Wolfe & Nadia Wauquier, 2015. "Tactics and Strategies for Managing Ebola Outbreaks and the Salience of Immunization," Post-Print hal-01214432, HAL.
    12. Robin N Thompson & Christopher A Gilligan & Nik J Cunniffe, 2016. "Detecting Presymptomatic Infection Is Necessary to Forecast Major Epidemics in the Earliest Stages of Infectious Disease Outbreaks," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-18, April.
    13. Kathrin Büttner & Joachim Krieter & Arne Traulsen & Imke Traulsen, 2013. "Efficient Interruption of Infection Chains by Targeted Removal of Central Holdings in an Animal Trade Network," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-12, September.
    14. Ellen Brooks-Pollock & Leon Danon & Hester Korthals Altes & Jennifer A Davidson & Andrew M T Pollock & Dick van Soolingen & Colin Campbell & Maeve K Lalor, 2020. "A model of tuberculosis clustering in low incidence countries reveals more transmission in the United Kingdom than the Netherlands between 2010 and 2015," PLOS Computational Biology, Public Library of Science, vol. 16(3), pages 1-14, March.
    15. Jonas I Liechti & Gabriel E Leventhal & Sebastian Bonhoeffer, 2017. "Host population structure impedes reversion to drug sensitivity after discontinuation of treatment," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-19, August.
    16. Zengmiao Wang & Peng Yang & Ruixue Wang & Luca Ferretti & Lele Zhao & Shan Pei & Xiaoli Wang & Lei Jia & Daitao Zhang & Yonghong Liu & Ziyan Liu & Quanyi Wang & Christophe Fraser & Huaiyu Tian, 2024. "Estimating the contribution of setting-specific contacts to SARS-CoV-2 transmission using digital contact tracing data," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    17. T Alex Perkins & Thomas W Scott & Arnaud Le Menach & David L Smith, 2013. "Heterogeneity, Mixing, and the Spatial Scales of Mosquito-Borne Pathogen Transmission," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-16, December.
    18. Otilia Boldea & Adriana Cornea-Madeira & João Madeira, 2023. "Disentangling the effect of measures, variants, and vaccines on SARS-CoV-2 infections in England: a dynamic intensity model," The Econometrics Journal, Royal Economic Society, vol. 26(3), pages 444-466.
    19. Mark D Jankowski & Christopher J Williams & Jeanne M Fair & Jennifer C Owen, 2013. "Birds Shed RNA-Viruses According to the Pareto Principle," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-9, August.
    20. Nathan O. Hodas & Jacob Hunter & Stephen J. Young & Kristina Lerman, 2018. "Model of cognitive dynamics predicts performance on standardized tests," Journal of Computational Social Science, Springer, vol. 1(2), pages 295-312, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0000180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.