IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v499y2025ics0304380024003132.html
   My bibliography  Save this article

Individual variation affects outbreak magnitude and predictability in multi-pathogen model of pigeons visiting dairy farms

Author

Listed:
  • Lazebnik, Teddy
  • Spiegel, Orr

Abstract

Zoonotic disease transmission between animals and humans is a growing risk, and the agricultural context acts as a likely point of transition, with an important role of individual heterogeneity. Livestock often occurs at high local densities, facilitating spread within sites (e.g. among cows in a dairy farm), while wildlife is often more mobile, potentially connecting spatially isolated sites. Thus, understanding the dynamics of disease spread in the wildlife-livestock interface is crucial for mitigating these risks of transmission. Specifically, the interactions between pigeons (Columba livia, also known as ‘rock doves’) and in-door cows at dairy farms can lead to significant disease transmission and economic losses for farmers; putting livestock, adjacent human populations, and other wildlife species at risk. In this paper, we propose a novel spatio-temporal multi-pathogen model with continuous spatial movement. The model expands on the SEIRD framework and accounts for both within-species and cross-species transmission of pathogens, as well as the exploration–exploitation movement dynamics of pigeons, which play a critical role in the spread of infectious agents. In addition to model formulation, we also implement it as an agent-based simulation approach and use empirical field data to investigate different biologically realistic scenarios, evaluating the effect of various parameters on the epidemic spread. Namely, in agreement with theoretical expectations, the model predicts that the heterogeneity of the movement dynamics of pigeons (on top and beyond the obvious effect of an increase of mean level movement itself) can drastically affect both the magnitude and stability of outbreaks. In addition, joint infection by multiple pathogens can have an interactive effect, reflecting a non-intuitive inhibition of the outbreak compared to predictions from single-pathogen SIR models. Our findings highlight the impact of heterogeneity in host behavior on their pathogens and allow realistic predictions of outbreak dynamics in the multi-pathogen wildlife-livestock interface with consequences to zoonotic diseases in various systems.

Suggested Citation

  • Lazebnik, Teddy & Spiegel, Orr, 2025. "Individual variation affects outbreak magnitude and predictability in multi-pathogen model of pigeons visiting dairy farms," Ecological Modelling, Elsevier, vol. 499(C).
  • Handle: RePEc:eee:ecomod:v:499:y:2025:i:c:s0304380024003132
    DOI: 10.1016/j.ecolmodel.2024.110925
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380024003132
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2024.110925?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:499:y:2025:i:c:s0304380024003132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.