IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v499y2025ics0304380024003132.html
   My bibliography  Save this article

Individual variation affects outbreak magnitude and predictability in multi-pathogen model of pigeons visiting dairy farms

Author

Listed:
  • Lazebnik, Teddy
  • Spiegel, Orr

Abstract

Zoonotic disease transmission between animals and humans is a growing risk, and the agricultural context acts as a likely point of transition, with an important role of individual heterogeneity. Livestock often occurs at high local densities, facilitating spread within sites (e.g. among cows in a dairy farm), while wildlife is often more mobile, potentially connecting spatially isolated sites. Thus, understanding the dynamics of disease spread in the wildlife-livestock interface is crucial for mitigating these risks of transmission. Specifically, the interactions between pigeons (Columba livia, also known as ‘rock doves’) and in-door cows at dairy farms can lead to significant disease transmission and economic losses for farmers; putting livestock, adjacent human populations, and other wildlife species at risk. In this paper, we propose a novel spatio-temporal multi-pathogen model with continuous spatial movement. The model expands on the SEIRD framework and accounts for both within-species and cross-species transmission of pathogens, as well as the exploration–exploitation movement dynamics of pigeons, which play a critical role in the spread of infectious agents. In addition to model formulation, we also implement it as an agent-based simulation approach and use empirical field data to investigate different biologically realistic scenarios, evaluating the effect of various parameters on the epidemic spread. Namely, in agreement with theoretical expectations, the model predicts that the heterogeneity of the movement dynamics of pigeons (on top and beyond the obvious effect of an increase of mean level movement itself) can drastically affect both the magnitude and stability of outbreaks. In addition, joint infection by multiple pathogens can have an interactive effect, reflecting a non-intuitive inhibition of the outbreak compared to predictions from single-pathogen SIR models. Our findings highlight the impact of heterogeneity in host behavior on their pathogens and allow realistic predictions of outbreak dynamics in the multi-pathogen wildlife-livestock interface with consequences to zoonotic diseases in various systems.

Suggested Citation

  • Lazebnik, Teddy & Spiegel, Orr, 2025. "Individual variation affects outbreak magnitude and predictability in multi-pathogen model of pigeons visiting dairy farms," Ecological Modelling, Elsevier, vol. 499(C).
  • Handle: RePEc:eee:ecomod:v:499:y:2025:i:c:s0304380024003132
    DOI: 10.1016/j.ecolmodel.2024.110925
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380024003132
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2024.110925?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erica F Stuber & Ben S Carlson & Brett R Jesmer, 2022. "Spatial personalities: a meta-analysis of consistent individual differences in spatial behavior," Behavioral Ecology, International Society for Behavioral Ecology, vol. 33(3), pages 477-486.
    2. Oded Berger-Tal & Jonathan Nathan & Ehud Meron & David Saltz, 2014. "The Exploration-Exploitation Dilemma: A Multidisciplinary Framework," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-8, April.
    3. Lazebnik, Teddy, 2023. "Computational applications of extended SIR models: A review focused on airborne pandemics," Ecological Modelling, Elsevier, vol. 483(C).
    4. Tesfatsion, Leigh S., 2002. "Agent-Based Computational Economics: Growing Economies from the Bottom Up," Staff General Research Papers Archive 5075, Iowa State University, Department of Economics.
    5. J. O. Lloyd-Smith & S. J. Schreiber & P. E. Kopp & W. M. Getz, 2005. "Superspreading and the effect of individual variation on disease emergence," Nature, Nature, vol. 438(7066), pages 355-359, November.
    6. Alexis Akira Toda, 2020. "Susceptible-Infected-Recovered (SIR) Dynamics of COVID-19 and Economic Impact," Papers 2003.11221, arXiv.org, revised Mar 2020.
    7. Shay O’Farrell & James N. Sanchirico & Orr Spiegel & Maxime Depalle & Alan C. Haynie & Steven A. Murawski & Larry Perruso & Andrew Strelcheck, 2019. "Disturbance modifies payoffs in the explore-exploit trade-off," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    8. Julie L Elser & Amber L Adams Progar & Karen M M Steensma & Tyler P Caskin & Susan R Kerr & Stephanie A Shwiff, 2019. "Economic and livestock health impacts of birds on dairies: Evidence from a survey of Washington dairy operators," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-12, September.
    9. Bondo, Kristin J. & Rosenberry, Christopher S. & Stainbrook, David & Walter, W. David, 2024. "Comparing risk of chronic wasting disease occurrence using Bayesian hierarchical spatial models and different surveillance types," Ecological Modelling, Elsevier, vol. 493(C).
    10. Klovdahl, A.S. & Potterat, J.J. & Woodhouse, D.E. & Muth, J.B. & Muth, S.Q. & Darrow, W.W., 1994. "Social networks and infectious disease: The Colorado Springs study," Social Science & Medicine, Elsevier, vol. 38(1), pages 79-88, January.
    11. Shami, Labib & Lazebnik, Teddy, 2022. "Economic aspects of the detection of new strains in a multi-strain epidemiological–mathematical model," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    12. Thunström, Linda & Newbold, Stephen C. & Finnoff, David & Ashworth, Madison & Shogren, Jason F., 2020. "The Benefits and Costs of Using Social Distancing to Flatten the Curve for COVID-19," Journal of Benefit-Cost Analysis, Cambridge University Press, vol. 11(2), pages 179-195, July.
    13. Teddy Lazebnik & Ariel Alexi, 2023. "High Resolution Spatio-Temporal Model for Room-Level Airborne Pandemic Spread," Mathematics, MDPI, vol. 11(2), pages 1-18, January.
    14. Wadkin, Laura E. & Holden, John & Ettelaie, Rammile & Holmes, Melvin J. & Smith, James & Golightly, Andrew & Parker, Nick G. & Baggaley, Andrew W., 2024. "Estimating the reproduction number, R0, from individual-based models of tree disease spread," Ecological Modelling, Elsevier, vol. 489(C).
    15. Stephen Eubank & Hasan Guclu & V. S. Anil Kumar & Madhav V. Marathe & Aravind Srinivasan & Zoltán Toroczkai & Nan Wang, 2004. "Modelling disease outbreaks in realistic urban social networks," Nature, Nature, vol. 429(6988), pages 180-184, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lazebnik, Teddy & Shami, Labib & Bunimovich-Mendrazitsky, Svetlana, 2023. "Intervention policy influence on the effect of epidemiological crisis on industry-level production through input–output networks," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    2. Wenting Yang & Jiantong Zhang & Ruolin Ma, 2020. "The Prediction of Infectious Diseases: A Bibliometric Analysis," IJERPH, MDPI, vol. 17(17), pages 1-19, August.
    3. Kaiser, Micha & Otterbach, Steffen & Sousa-Poza, Alfonso & Bloom, David E., 2020. "Interventions with Positive Side-Effects: COVID-19 Non-Pharmaceutical Interventions and Infectious Diseases in Europe," IZA Discussion Papers 13927, Institute of Labor Economics (IZA).
    4. Lazebnik, Teddy, 2023. "Computational applications of extended SIR models: A review focused on airborne pandemics," Ecological Modelling, Elsevier, vol. 483(C).
    5. Xin Li & Lin Zhou & Tao Jia & Ran Peng & Xiongwu Fu & Yuliang Zou, 2020. "Associating COVID-19 Severity with Urban Factors: A Case Study of Wuhan," IJERPH, MDPI, vol. 17(18), pages 1-20, September.
    6. Ariel Alexi & Teddy Lazebnik & Labib Shami, 2024. "Microfounded Tax Revenue Forecast Model with Heterogeneous Population and Genetic Algorithm Approach," Computational Economics, Springer;Society for Computational Economics, vol. 63(5), pages 1705-1734, May.
    7. Oliver Hinz & Jochen Eckert, 2010. "The Impact of Search and Recommendation Systems on Sales in Electronic Commerce," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 2(2), pages 67-77, April.
    8. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    9. James K. Hammitt, 2020. "Valuing mortality risk in the time of COVID-19," Journal of Risk and Uncertainty, Springer, vol. 61(2), pages 129-154, October.
    10. Hugo S. Gonçalves & Sérgio Moro, 2023. "On the economic impacts of COVID‐19: A text mining literature analysis," Review of Development Economics, Wiley Blackwell, vol. 27(1), pages 375-394, February.
    11. M. Hashem Pesaran & Cynthia Fan Yang, 2022. "Matching theory and evidence on Covid‐19 using a stochastic network SIR model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1204-1229, September.
    12. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    13. Floriana Gargiulo & Sônia Ternes & Sylvie Huet & Guillaume Deffuant, 2010. "An Iterative Approach for Generating Statistically Realistic Populations of Households," PLOS ONE, Public Library of Science, vol. 5(1), pages 1-9, January.
    14. Saturnino Luz & Masood Masoodian, 2022. "Exploring Environmental and Geographical Factors Influencing the Spread of Infectious Diseases with Interactive Maps," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    15. John E Pearson & Paul Krapivsky & Alan S Perelson, 2011. "Stochastic Theory of Early Viral Infection: Continuous versus Burst Production of Virions," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-17, February.
    16. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
    17. Shami, Labib & Lazebnik, Teddy, 2022. "Economic aspects of the detection of new strains in a multi-strain epidemiological–mathematical model," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    18. Kuchler, Theresa & Russel, Dominic & Stroebel, Johannes, 2022. "JUE Insight: The geographic spread of COVID-19 correlates with the structure of social networks as measured by Facebook," Journal of Urban Economics, Elsevier, vol. 127(C).
    19. Pablo D. Fajgelbaum & Amit Khandelwal & Wookun Kim & Cristiano Mantovani & Edouard Schaal, 2021. "Optimal Lockdown in a Commuting Network," American Economic Review: Insights, American Economic Association, vol. 3(4), pages 503-522, December.
    20. Juan Manuel Larrosa, 2016. "Agentes computacionales y análisis económico," Revista de Economía Institucional, Universidad Externado de Colombia - Facultad de Economía, vol. 18(34), pages 87-113, January-J.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:499:y:2025:i:c:s0304380024003132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.