IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0046310.html
   My bibliography  Save this article

Integrating Survey and Molecular Approaches to Better Understand Wildlife Disease Ecology

Author

Listed:
  • Brendan D Cowled
  • Michael P Ward
  • Shawn W Laffan
  • Francesca Galea
  • M Graeme Garner
  • Anna J MacDonald
  • Ian Marsh
  • Petra Muellner
  • Katherine Negus
  • Sumaiya Quasim
  • Andrew P Woolnough
  • Stephen D Sarre

Abstract

Infectious wildlife diseases have enormous global impacts, leading to human pandemics, global biodiversity declines and socio-economic hardship. Understanding how infection persists and is transmitted in wildlife is critical for managing diseases, but our understanding is limited. Our study aim was to better understand how infectious disease persists in wildlife populations by integrating genetics, ecology and epidemiology approaches. Specifically, we aimed to determine whether environmental or host factors were stronger drivers of Salmonella persistence or transmission within a remote and isolated wild pig (Sus scrofa) population. We determined the Salmonella infection status of wild pigs. Salmonella isolates were genotyped and a range of data was collected on putative risk factors for Salmonella transmission. We a priori identified several plausible biological hypotheses for Salmonella prevalence (cross sectional study design) versus transmission (molecular case series study design) and fit the data to these models. There were 543 wild pig Salmonella observations, sampled at 93 unique locations. Salmonella prevalence was 41% (95% confidence interval [CI]: 37–45%). The median Salmonella DICE coefficient (or Salmonella genetic similarity) was 52% (interquartile range [IQR]: 42–62%). Using the traditional cross sectional prevalence study design, the only supported model was based on the hypothesis that abundance of available ecological resources determines Salmonella prevalence in wild pigs. In the molecular study design, spatial proximity and herd membership as well as some individual risk factors (sex, condition score and relative density) determined transmission between pigs. Traditional cross sectional surveys and molecular epidemiological approaches are complementary and together can enhance understanding of disease ecology: abundance of ecological resources critical for wildlife influences Salmonella prevalence, whereas Salmonella transmission is driven by local spatial, social, density and individual factors, rather than resources. This enhanced understanding has implications for the control of diseases in wildlife populations. Attempts to manage wildlife disease using simplistic density approaches do not acknowledge the complexity of disease ecology.

Suggested Citation

  • Brendan D Cowled & Michael P Ward & Shawn W Laffan & Francesca Galea & M Graeme Garner & Anna J MacDonald & Ian Marsh & Petra Muellner & Katherine Negus & Sumaiya Quasim & Andrew P Woolnough & Stephen, 2012. "Integrating Survey and Molecular Approaches to Better Understand Wildlife Disease Ecology," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-8, October.
  • Handle: RePEc:plo:pone00:0046310
    DOI: 10.1371/journal.pone.0046310
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0046310
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0046310&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0046310?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christl A. Donnelly & Rosie Woodroffe & D. R. Cox & F. John Bourne & C. L. Cheeseman & Richard S. Clifton-Hadley & Gao Wei & George Gettinby & Peter Gilks & Helen Jenkins & W. Thomas Johnston & Andrea, 2006. "Positive and negative effects of widespread badger culling on tuberculosis in cattle," Nature, Nature, vol. 439(7078), pages 843-846, February.
    2. Kate E. Jones & Nikkita G. Patel & Marc A. Levy & Adam Storeygard & Deborah Balk & John L. Gittleman & Peter Daszak, 2008. "Global trends in emerging infectious diseases," Nature, Nature, vol. 451(7181), pages 990-993, February.
    3. S. Davis & P. Trapman & H. Leirs & M. Begon & J. A. P. Heesterbeek, 2008. "The abundance threshold for plague as a critical percolation phenomenon," Nature, Nature, vol. 454(7204), pages 634-637, July.
    4. J. O. Lloyd-Smith & S. J. Schreiber & P. E. Kopp & W. M. Getz, 2005. "Superspreading and the effect of individual variation on disease emergence," Nature, Nature, vol. 438(7066), pages 355-359, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna C Peterson & Valerie J McKenzie, 2014. "Investigating Differences across Host Species and Scales to Explain the Distribution of the Amphibian Pathogen Batrachochytrium dendrobatidis," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-15, September.
    2. Wenting Yang & Jiantong Zhang & Ruolin Ma, 2020. "The Prediction of Infectious Diseases: A Bibliometric Analysis," IJERPH, MDPI, vol. 17(17), pages 1-19, August.
    3. Sean M Moore & Andrew Monaghan & Kevin S Griffith & Titus Apangu & Paul S Mead & Rebecca J Eisen, 2012. "Improvement of Disease Prediction and Modeling through the Use of Meteorological Ensembles: Human Plague in Uganda," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-11, September.
    4. Seth Blumberg & James O Lloyd-Smith, 2013. "Inference of R0 and Transmission Heterogeneity from the Size Distribution of Stuttering Chains," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-17, May.
    5. Nikolett Orosz & Tünde Tóthné Tóth & Gyöngyi Vargáné Gyuró & Zsoltné Tibor Nábrádi & Klára Hegedűsné Sorosi & Zsuzsa Nagy & Éva Rigó & Ádám Kaposi & Gabriella Gömöri & Cornelia Melinda Adi Santoso & A, 2022. "Comparison of Length of Hospital Stay for Community-Acquired Infections Due to Enteric Pathogens, Influenza Viruses and Multidrug-Resistant Bacteria: A Cross-Sectional Study in Hungary," IJERPH, MDPI, vol. 19(23), pages 1-16, November.
    6. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    7. Mudassar Arsalan & Omar Mubin & Fady Alnajjar & Belal Alsinglawi, 2020. "COVID-19 Global Risk: Expectation vs. Reality," IJERPH, MDPI, vol. 17(15), pages 1-10, August.
    8. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    9. John E Pearson & Paul Krapivsky & Alan S Perelson, 2011. "Stochastic Theory of Early Viral Infection: Continuous versus Burst Production of Virions," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-17, February.
    10. World Bank, 2024. "Toward a One Health Approach in Sudan," World Bank Publications - Reports 41580, The World Bank Group.
    11. Ceddia, M.G. & Bardsley, N.O. & Goodwin, R. & Holloway, G.J. & Nocella, G. & Stasi, A., 2013. "A complex system perspective on the emergence and spread of infectious diseases: Integrating economic and ecological aspects," Ecological Economics, Elsevier, vol. 90(C), pages 124-131.
    12. Rowe, Francisco & Mahony, Michael & Graells-Garrido, Eduardo & Rango, Marzia & Sievers, Niklas, 2021. "Using Twitter to Track Immigration Sentiment During Early Stages of the COVID-19 Pandemic," SocArXiv pc3za_v1, Center for Open Science.
    13. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    14. Ongolo, Symphorien & Giessen, Lukas & Karsenty, Alain & Tchamba, Martin & Krott, Max, 2021. "Forestland policies and politics in Africa: Recent evidence and new challenges," Forest Policy and Economics, Elsevier, vol. 127(C).
    15. Moshe B Hoshen & Anthony H Burton & Themis J V Bowcock, 2007. "Simulating disease transmission dynamics at a multi-scale level," International Journal of Microsimulation, International Microsimulation Association, vol. 1(1), pages 26-34.
    16. Lazebnik, Teddy & Spiegel, Orr, 2025. "Individual variation affects outbreak magnitude and predictability in multi-pathogen model of pigeons visiting dairy farms," Ecological Modelling, Elsevier, vol. 499(C).
    17. Paige, Sarah B. & Malavé, Carly & Mbabazi, Edith & Mayer, Jonathan & Goldberg, Tony L., 2015. "Uncovering zoonoses awareness in an emerging disease ‘hotspot’," Social Science & Medicine, Elsevier, vol. 129(C), pages 78-86.
    18. Jianhua Wang & Guan-Zhu Han, 2023. "Genome mining shows that retroviruses are pervasively invading vertebrate genomes," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Livia Marchetti & Valentina Cattivelli & Claudia Cocozza & Fabio Salbitano & Marco Marchetti, 2020. "Beyond Sustainability in Food Systems: Perspectives from Agroecology and Social Innovation," Sustainability, MDPI, vol. 12(18), pages 1-24, September.
    20. Luc E. Coffeng & Sake J. de Vlas, 2022. "Predicting epidemics and the impact of interventions in heterogeneous settings: Standard SEIR models are too pessimistic," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 28-35, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0046310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.