IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v220y2009i15p1764-1775.html
   My bibliography  Save this article

Traditional occupancy–abundance models are inadequate for zero-inflated ecological count data

Author

Listed:
  • Sileshi, Gudeta
  • Hailu, Girma
  • Nyadzi, Gerson I.

Abstract

Traditional occupancy–abundance and abundance–variance–occupancy models do not take into account zero-inflation, which occurs when sampling rare species or in correlated counts arising from repeated measures. In this paper we propose a novel approach extending occupancy–abundance relationships to zero-inflated count data. This approach involves three steps: (1) selecting distributional assumptions and parsimonious models for the count data, (2) estimating abundance, occupancy and variance parameters as functions of site- and/or time-specific covariates, and (3) modelling the occupancy–abundance relationship using the parameters estimated in step 2. Five count datasets were used for comparing standard Poisson and negative binomial distribution (NBD) occupancy–abundance models. Zero-inflated Poisson (ZIP) and zero-inflated negative binomial (ZINB) occupancy–abundance models were introduced for the first time, and these were compared with the Poisson, NBD, He and Gaston's and Wilson and Room's abundance–variance–occupancy models. The percentage of zero counts ranged from 45 to 80% in the datasets analysed. For most of the datasets, the ZINB occupancy–abundance model performed better than the traditional Poisson, NBD and Wilson and Room's model. He and Gaston's model performed better than the ZINB in two out of the five datasets. However, the occupancy predicted by all models increased faster than the observed as density increased resulting in significant mismatch at the highest densities. Limitations of the various models are discussed, and the need for careful choice of count distributions and predictors in estimating abundance and occupancy parameter are indicated.

Suggested Citation

  • Sileshi, Gudeta & Hailu, Girma & Nyadzi, Gerson I., 2009. "Traditional occupancy–abundance models are inadequate for zero-inflated ecological count data," Ecological Modelling, Elsevier, vol. 220(15), pages 1764-1775.
  • Handle: RePEc:eee:ecomod:v:220:y:2009:i:15:p:1764-1775
    DOI: 10.1016/j.ecolmodel.2009.03.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380009001963
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2009.03.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James O Lloyd-Smith, 2007. "Maximum Likelihood Estimation of the Negative Binomial Dispersion Parameter for Highly Overdispersed Data, with Applications to Infectious Diseases," PLOS ONE, Public Library of Science, vol. 2(2), pages 1-8, February.
    2. Piñeiro, Gervasio & Perelman, Susana & Guerschman, Juan P. & Paruelo, José M., 2008. "How to evaluate models: Observed vs. predicted or predicted vs. observed?," Ecological Modelling, Elsevier, vol. 216(3), pages 316-322.
    3. Daniel B. Hall, 2000. "Zero-Inflated Poisson and Binomial Regression with Random Effects: A Case Study," Biometrics, The International Biometric Society, vol. 56(4), pages 1030-1039, December.
    4. Krishna Saha & Sudhir Paul, 2005. "Bias-Corrected Maximum Likelihood Estimator of the Negative Binomial Dispersion Parameter," Biometrics, The International Biometric Society, vol. 61(1), pages 179-185, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lecomte, J.B. & Benoît, H.P. & Etienne, M.P. & Bel, L. & Parent, E., 2013. "Modeling the habitat associations and spatial distribution of benthic macroinvertebrates: A hierarchical Bayesian model for zero-inflated biomass data," Ecological Modelling, Elsevier, vol. 265(C), pages 74-84.
    2. Mailu, Stephen & Kuloba, Bernard & Ruto, Eric & Nyangena, Wilfred, 2010. "Effect of cropping policy on landowner reactions towards wildlife: a case of Naivasha area, Kenya," MPRA Paper 21308, University Library of Munich, Germany.
    3. Mailu, Stephen & Lukibisi, Barasa & Waithaka, Michael, 2011. "Application of various count models: Sahiwal demand from Naivasha," MPRA Paper 32074, University Library of Munich, Germany, revised 06 Jul 2011.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krishna K. Saha & Debaraj Sen & Chun Jin, 2012. "Profile likelihood-based confidence interval for the dispersion parameter in count data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(4), pages 765-783, August.
    2. Luiz Paulo Fávero & Joseph F. Hair & Rafael de Freitas Souza & Matheus Albergaria & Talles V. Brugni, 2021. "Zero-Inflated Generalized Linear Mixed Models: A Better Way to Understand Data Relationships," Mathematics, MDPI, vol. 9(10), pages 1-28, May.
    3. Cho, Daegon & Hwang, Youngdeok & Park, Jongwon, 2018. "More buzz, more vibes: Impact of social media on concert distribution," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 103-113.
    4. Greene, William, 2007. "Functional Form and Heterogeneity in Models for Count Data," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(2), pages 113-218, August.
    5. Booth, Shawn & Walters, William J & Steenbeek, Jeroen & Christensen, Villy & Charmasson, Sabine, 2020. "An Ecopath with Ecosim model for the Pacific coast of eastern Japan: Describing the marine environment and its fisheries prior to the Great East Japan earthquake," Ecological Modelling, Elsevier, vol. 428(C).
    6. Yanling Li & Zita Oravecz & Shuai Zhou & Yosef Bodovski & Ian J. Barnett & Guangqing Chi & Yuan Zhou & Naomi P. Friedman & Scott I. Vrieze & Sy-Miin Chow, 2022. "Bayesian Forecasting with a Regime-Switching Zero-Inflated Multilevel Poisson Regression Model: An Application to Adolescent Alcohol Use with Spatial Covariates," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 376-402, June.
    7. Yanlin Tang & Liya Xiang & Zhongyi Zhu, 2014. "Risk Factor Selection in Rate Making: EM Adaptive LASSO for Zero‐Inflated Poisson Regression Models," Risk Analysis, John Wiley & Sons, vol. 34(6), pages 1112-1127, June.
    8. Damgaard, Christian, 2008. "Modelling pin-point plant cover data along an environmental gradient," Ecological Modelling, Elsevier, vol. 214(2), pages 404-410.
    9. Soutik Ghosal & Timothy S. Lau & Jeremy Gaskins & Maiying Kong, 2020. "A hierarchical mixed effect hurdle model for spatiotemporal count data and its application to identifying factors impacting health professional shortages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1121-1144, November.
    10. Liu, Juxin & Ma, Yanyuan & Johnstone, Jill, 2020. "A goodness-of-fit test for zero-inflated Poisson mixed effects models in tree abundance studies," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    11. Robert Richardson, 2022. "Spatial Generalized Linear Models with Non-Gaussian Translation Processes," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(1), pages 4-21, March.
    12. Ren, Haiying & Zhao, Yuhui, 2021. "Technology opportunity discovery based on constructing, evaluating, and searching knowledge networks," Technovation, Elsevier, vol. 101(C).
    13. Mahdi Teimouri, 2022. "bccp: an R package for life-testing and survival analysis," Computational Statistics, Springer, vol. 37(1), pages 469-489, March.
    14. Aldo M. Garay & Victor H. Lachos & Heleno Bolfarine, 2015. "Bayesian estimation and case influence diagnostics for the zero-inflated negative binomial regression model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(6), pages 1148-1165, June.
    15. Sellers, Kimberly F. & Raim, Andrew, 2016. "A flexible zero-inflated model to address data dispersion," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 68-80.
    16. Tousifur Rahman & Partha Jyoti Hazarika & M. Masoom Ali & Manash Pratim Barman, 2022. "Three-Inflated Poisson Distribution and its Application in Suicide Cases of India During Covid-19 Pandemic," Annals of Data Science, Springer, vol. 9(5), pages 1103-1127, October.
    17. Li, Yan & Jiao, Yan, 2013. "Modeling seabird bycatch in the U.S. Atlantic pelagic longline fishery: Fixed year effect versus random year effect," Ecological Modelling, Elsevier, vol. 260(C), pages 36-41.
    18. Shuang Liu & David I Stern, 2008. "A Meta-Analysis of Contingent Valuation Studies in Coastal and Near-Shore Marine Ecosystems," Socio-Economics and the Environment in Discussion (SEED) Working Paper Series 2008-15, CSIRO Sustainable Ecosystems.
    19. Cristian Roner & Claudia Di Caterina & Davide Ferrari, 2021. "Exponential Tilting for Zero-inflated Interval Regression with Applications to Cyber Security Survey Data," BEMPS - Bozen Economics & Management Paper Series BEMPS85, Faculty of Economics and Management at the Free University of Bozen.
    20. Jane Osburn, 2011. "A Latent Variable Approach to Examining the Effects of HR Policies on the Inter- and Intra-Establishment Wage and Employment Structure: A Study of Two Precision Manufacturing Industries," Working Papers 451, U.S. Bureau of Labor Statistics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:220:y:2009:i:15:p:1764-1775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.