IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004836.html
   My bibliography  Save this article

Detecting Presymptomatic Infection Is Necessary to Forecast Major Epidemics in the Earliest Stages of Infectious Disease Outbreaks

Author

Listed:
  • Robin N Thompson
  • Christopher A Gilligan
  • Nik J Cunniffe

Abstract

We assess how presymptomatic infection affects predictability of infectious disease epidemics. We focus on whether or not a major outbreak (i.e. an epidemic that will go on to infect a large number of individuals) can be predicted reliably soon after initial cases of disease have appeared within a population. For emerging epidemics, significant time and effort is spent recording symptomatic cases. Scientific attention has often focused on improving statistical methodologies to estimate disease transmission parameters from these data. Here we show that, even if symptomatic cases are recorded perfectly, and disease spread parameters are estimated exactly, it is impossible to estimate the probability of a major outbreak without ambiguity. Our results therefore provide an upper bound on the accuracy of forecasts of major outbreaks that are constructed using data on symptomatic cases alone. Accurate prediction of whether or not an epidemic will occur requires records of symptomatic individuals to be supplemented with data concerning the true infection status of apparently uninfected individuals. To forecast likely future behavior in the earliest stages of an emerging outbreak, it is therefore vital to develop and deploy accurate diagnostic tests that can determine whether asymptomatic individuals are actually uninfected, or instead are infected but just do not yet show detectable symptoms.Author Summary: Emerging epidemics pose a significant challenge to human health worldwide. Accurate real-time forecasts of whether or not initial reports will be followed by a major outbreak are necessary for efficient deployment of control. For all infectious diseases, there is a delay between infection and the appearance of symptoms, i.e. an initial period following first infection during which infected individuals remain presymptomatic. We use mathematical modeling to evaluate the effect of presymptomatic infection on predictions of major epidemics. Our results show rigorously, for the first time, that precise estimates of the current number of infected individuals—and consequently the chance of a major outbreak in future—cannot be inferred from data on symptomatic cases alone. This is the case even if the values of epidemiological parameters, such as the average infection and death or recovery rates of individuals in the population, can be estimated accurately. Accurate prediction is in fact impossible without additional data from which the number of currently infected but as yet presymptomatic individuals can be deduced.

Suggested Citation

  • Robin N Thompson & Christopher A Gilligan & Nik J Cunniffe, 2016. "Detecting Presymptomatic Infection Is Necessary to Forecast Major Epidemics in the Earliest Stages of Infectious Disease Outbreaks," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-18, April.
  • Handle: RePEc:plo:pcbi00:1004836
    DOI: 10.1371/journal.pcbi.1004836
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004836
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004836&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004836?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Helen J Wearing & Pejman Rohani & Matt J Keeling, 2005. "Appropriate Models for the Management of Infectious Diseases," PLOS Medicine, Public Library of Science, vol. 2(7), pages 1-1, July.
    2. Eric M. Leroy & Brice Kumulungui & Xavier Pourrut & Pierre Rouquet & Alexandre Hassanin & Philippe Yaba & André Délicat & Janusz T. Paweska & Jean-Paul Gonzalez & Robert Swanepoel, 2005. "Fruit bats as reservoirs of Ebola virus," Nature, Nature, vol. 438(7068), pages 575-576, December.
    3. Meggan E Craft & Hawthorne L Beyer & Daniel T Haydon, 2013. "Estimating the Probability of a Major Outbreak from the Timing of Early Cases: An Indeterminate Problem?," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-7, March.
    4. Declan Butler, 2014. "Models overestimate Ebola cases," Nature, Nature, vol. 515(7525), pages 18-18, November.
    5. John M Drake, 2005. "Limits to Forecasting Precision for Outbreaks of Directly Transmitted Diseases," PLOS Medicine, Public Library of Science, vol. 3(1), pages 1-1, November.
    6. Maria Vittoria Barbarossa & Attila Dénes & Gábor Kiss & Yukihiko Nakata & Gergely Röst & Zsolt Vizi, 2015. "Transmission Dynamics and Final Epidemic Size of Ebola Virus Disease Outbreaks with Varying Interventions," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-21, July.
    7. Phenyo E. Lekone & Bärbel F. Finkenstädt, 2006. "Statistical Inference in a Stochastic Epidemic SEIR Model with Control Intervention: Ebola as a Case Study," Biometrics, The International Biometric Society, vol. 62(4), pages 1170-1177, December.
    8. Thompson, Robin N. & Cobb, Richard C. & Gilligan, Christopher A. & Cunniffe, Nik J., 2016. "Management of invading pathogens should be informed by epidemiology rather than administrative boundaries," Ecological Modelling, Elsevier, vol. 324(C), pages 28-32.
    9. Jeremy Ginsberg & Matthew H. Mohebbi & Rajan S. Patel & Lynnette Brammer & Mark S. Smolinski & Larry Brilliant, 2009. "Detecting influenza epidemics using search engine query data," Nature, Nature, vol. 457(7232), pages 1012-1014, February.
    10. J. O. Lloyd-Smith & S. J. Schreiber & P. E. Kopp & W. M. Getz, 2005. "Superspreading and the effect of individual variation on disease emergence," Nature, Nature, vol. 438(7066), pages 355-359, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robin N Thompson & Christopher A Gilligan & Nik J Cunniffe, 2018. "Control fast or control smart: When should invading pathogens be controlled?," PLOS Computational Biology, Public Library of Science, vol. 14(2), pages 1-21, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna C Peterson & Valerie J McKenzie, 2014. "Investigating Differences across Host Species and Scales to Explain the Distribution of the Amphibian Pathogen Batrachochytrium dendrobatidis," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-15, September.
    2. Bekiros, Stelios & Kouloumpou, Dimitra, 2020. "SBDiEM: A new mathematical model of infectious disease dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    3. Carbone, Giuseppe & De Vincenzo, Ilario, 2022. "A general theory for infectious disease dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    4. Max S Y Lau & Gavin J Gibson & Hola Adrakey & Amanda McClelland & Steven Riley & Jon Zelner & George Streftaris & Sebastian Funk & Jessica Metcalf & Benjamin D Dalziel & Bryan T Grenfell, 2017. "A mechanistic spatio-temporal framework for modelling individual-to-individual transmission—With an application to the 2014-2015 West Africa Ebola outbreak," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-18, October.
    5. Pilar Hernández & Carlos Pena & Alberto Ramos & Juan José Gómez-Cadenas, 2021. "A new formulation of compartmental epidemic modelling for arbitrary distributions of incubation and removal times," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-22, February.
    6. Shaoren Wang & Yenchun Jim Wu & Ruiting Li, 2022. "An Improved Genetic Algorithm for Location Allocation Problem with Grey Theory in Public Health Emergencies," IJERPH, MDPI, vol. 19(15), pages 1-18, August.
    7. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    8. David H Chae & Sean Clouston & Mark L Hatzenbuehler & Michael R Kramer & Hannah L F Cooper & Sacoby M Wilson & Seth I Stephens-Davidowitz & Robert S Gold & Bruce G Link, 2015. "Association between an Internet-Based Measure of Area Racism and Black Mortality," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-12, April.
    9. Xiaoli Wang & Shuangsheng Wu & C Raina MacIntyre & Hongbin Zhang & Weixian Shi & Xiaomin Peng & Wei Duan & Peng Yang & Yi Zhang & Quanyi Wang, 2015. "Using an Adjusted Serfling Regression Model to Improve the Early Warning at the Arrival of Peak Timing of Influenza in Beijing," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-14, March.
    10. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    11. Ishani Chaudhuri & Parthajit Kayal, 2022. "Predicting Power of Ticker Search Volume in Indian Stock Market," Working Papers 2022-214, Madras School of Economics,Chennai,India.
    12. Yang, Xin & Pan, Bing & Evans, James A. & Lv, Benfu, 2015. "Forecasting Chinese tourist volume with search engine data," Tourism Management, Elsevier, vol. 46(C), pages 386-397.
    13. Kuchler, Theresa & Russel, Dominic & Stroebel, Johannes, 2022. "JUE Insight: The geographic spread of COVID-19 correlates with the structure of social networks as measured by Facebook," Journal of Urban Economics, Elsevier, vol. 127(C).
    14. Lahrouz, A. & El Mahjour, H. & Settati, A. & Bernoussi, A., 2018. "Dynamics and optimal control of a non-linear epidemic model with relapse and cure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 299-317.
    15. Markowitz, Sara & Nesson, Erik & Robinson, Joshua J., 2019. "The effects of employment on influenza rates," Economics & Human Biology, Elsevier, vol. 34(C), pages 286-295.
    16. Bentzen, Jeanet Sinding, 2021. "In crisis, we pray: Religiosity and the COVID-19 pandemic," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 541-583.
    17. Jesse T. Richman & Ryan J. Roberts, 2023. "Assessing Spurious Correlations in Big Search Data," Forecasting, MDPI, vol. 5(1), pages 1-12, February.
    18. Linus Schiöler & Marianne Fris�n, 2012. "Multivariate outbreak detection," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(2), pages 223-242, April.
    19. Sasikiran Kandula & Jeffrey Shaman, 2019. "Reappraising the utility of Google Flu Trends," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-16, August.
    20. Moshe B Hoshen & Anthony H Burton & Themis J V Bowcock, 2007. "Simulating disease transmission dynamics at a multi-scale level," International Journal of Microsimulation, International Microsimulation Association, vol. 1(1), pages 26-34.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004836. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.