IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0074292.html
   My bibliography  Save this article

Efficient Interruption of Infection Chains by Targeted Removal of Central Holdings in an Animal Trade Network

Author

Listed:
  • Kathrin Büttner
  • Joachim Krieter
  • Arne Traulsen
  • Imke Traulsen

Abstract

Centrality parameters in animal trade networks typically have right-skewed distributions, implying that these networks are highly resistant against the random removal of holdings, but vulnerable to the targeted removal of the most central holdings. In the present study, we analysed the structural changes of an animal trade network topology based on the targeted removal of holdings using specific centrality parameters in comparison to the random removal of holdings. Three different time periods were analysed: the three-year network, the yearly and the monthly networks. The aim of this study was to identify appropriate measures for the targeted removal, which lead to a rapid fragmentation of the network. Furthermore, the optimal combination of the removal of three holdings regardless of their centrality was identified. The results showed that centrality parameters based on ingoing trade contacts, e.g. in-degree, ingoing infection chain and ingoing closeness, were not suitable for a rapid fragmentation in all three time periods. More efficient was the removal based on parameters considering the outgoing trade contacts. In all networks, a maximum percentage of 7.0% (on average 5.2%) of the holdings had to be removed to reduce the size of the largest component by more than 75%. The smallest difference from the optimal combination for all three time periods was obtained by the removal based on out-degree with on average 1.4% removed holdings, followed by outgoing infection chain and outgoing closeness. The targeted removal using the betweenness centrality differed the most from the optimal combination in comparison to the other parameters which consider the outgoing trade contacts. Due to the pyramidal structure and the directed nature of the pork supply chain the most efficient interruption of the infection chain for all three time periods was obtained by using the targeted removal based on out-degree.

Suggested Citation

  • Kathrin Büttner & Joachim Krieter & Arne Traulsen & Imke Traulsen, 2013. "Efficient Interruption of Infection Chains by Targeted Removal of Central Holdings in an Animal Trade Network," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-12, September.
  • Handle: RePEc:plo:pone00:0074292
    DOI: 10.1371/journal.pone.0074292
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0074292
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0074292&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0074292?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marcel Salathé & James H Jones, 2010. "Dynamics and Control of Diseases in Networks with Community Structure," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-11, April.
    2. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    3. J. O. Lloyd-Smith & S. J. Schreiber & P. E. Kopp & W. M. Getz, 2005. "Superspreading and the effect of individual variation on disease emergence," Nature, Nature, vol. 438(7066), pages 355-359, November.
    4. D. Brockmann & L. Hufnagel & T. Geisel, 2006. "The scaling laws of human travel," Nature, Nature, vol. 439(7075), pages 462-465, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    2. Moshe B Hoshen & Anthony H Burton & Themis J V Bowcock, 2007. "Simulating disease transmission dynamics at a multi-scale level," International Journal of Microsimulation, International Microsimulation Association, vol. 1(1), pages 26-34.
    3. Eugenio Valdano & Chiara Poletto & Armando Giovannini & Diana Palma & Lara Savini & Vittoria Colizza, 2015. "Predicting Epidemic Risk from Past Temporal Contact Data," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-19, March.
    4. Jose L Herrera & Ravi Srinivasan & John S Brownstein & Alison P Galvani & Lauren Ancel Meyers, 2016. "Disease Surveillance on Complex Social Networks," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-16, July.
    5. Marcel Salathé & James H Jones, 2010. "Dynamics and Control of Diseases in Networks with Community Structure," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-11, April.
    6. Samuel F Rosenblatt & Jeffrey A Smith & G Robin Gauthier & Laurent Hébert-Dufresne, 2020. "Immunization strategies in networks with missing data," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-21, July.
    7. Taghavian, Fatemeh & Salehi, Mostafa & Teimouri, Mehdi, 2017. "A local immunization strategy for networks with overlapping community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 148-156.
    8. Leary, C.C. & Schwehm, M. & Eichner, M. & Duerr, H.P., 2007. "Tuning degree distributions: Departing from scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 731-738.
    9. Lasse Loepfe & Antonio Cabrales & Angel Sánchez, 2013. "Towards a Proper Assignment of Systemic Risk: The Combined Roles of Network Topology and Shock Characteristics," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-1, October.
    10. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    11. Ferreira, A.S. & Raposo, E.P. & Viswanathan, G.M. & da Luz, M.G.E., 2012. "The influence of the environment on Lévy random search efficiency: Fractality and memory effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3234-3246.
    12. Gregory, Steve, 2012. "Ordered community structure in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2752-2763.
    13. Sanjeev Goyal & Fernando Vega-Redondo, 2000. "Learning, Network Formation and Coordination," Econometric Society World Congress 2000 Contributed Papers 0113, Econometric Society.
    14. Quayle, A.P. & Siddiqui, A.S. & Jones, S.J.M., 2006. "Preferential network perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 823-840.
    15. Chen, Lei & Yue, Dong & Dou, Chunxia, 2019. "Optimization on vulnerability analysis and redundancy protection in interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1216-1226.
    16. Bálint Mészáros & István Simon & Zsuzsanna Dosztányi, 2009. "Prediction of Protein Binding Regions in Disordered Proteins," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-18, May.
    17. Irina Rish & Guillermo Cecchi & Benjamin Thyreau & Bertrand Thirion & Marion Plaze & Marie Laure Paillere-Martinot & Catherine Martelli & Jean-Luc Martinot & Jean-Baptiste Poline, 2013. "Schizophrenia as a Network Disease: Disruption of Emergent Brain Function in Patients with Auditory Hallucinations," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-15, January.
    18. Wang, Zhuoyang & Chen, Guo & Hill, David J. & Dong, Zhao Yang, 2016. "A power flow based model for the analysis of vulnerability in power networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 105-115.
    19. Bellingeri, Michele & Cassi, Davide & Vincenzi, Simone, 2014. "Efficiency of attack strategies on complex model and real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 414(C), pages 174-180.
    20. Bech, Morten L. & Atalay, Enghin, 2010. "The topology of the federal funds market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5223-5246.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0074292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.