IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-50487-7.html
   My bibliography  Save this article

Estimating the contribution of setting-specific contacts to SARS-CoV-2 transmission using digital contact tracing data

Author

Listed:
  • Zengmiao Wang

    (Beijing Normal University)

  • Peng Yang

    (Beijing Center for Disease Prevention and Control
    Beijing Research Center for Respiratory Infectious Diseases)

  • Ruixue Wang

    (Beijing Normal University)

  • Luca Ferretti

    (University of Oxford
    University of Oxford)

  • Lele Zhao

    (University of Oxford
    University of Oxford)

  • Shan Pei

    (Beijing Normal University)

  • Xiaoli Wang

    (Beijing Center for Disease Prevention and Control
    Beijing Research Center for Respiratory Infectious Diseases)

  • Lei Jia

    (Beijing Center for Disease Prevention and Control
    Beijing Research Center for Respiratory Infectious Diseases)

  • Daitao Zhang

    (Beijing Center for Disease Prevention and Control
    Beijing Research Center for Respiratory Infectious Diseases)

  • Yonghong Liu

    (Beijing Center for Disease Prevention and Control
    Beijing Research Center for Respiratory Infectious Diseases)

  • Ziyan Liu

    (Beijing Normal University)

  • Quanyi Wang

    (Beijing Center for Disease Prevention and Control
    Beijing Research Center for Respiratory Infectious Diseases)

  • Christophe Fraser

    (University of Oxford
    University of Oxford)

  • Huaiyu Tian

    (Beijing Normal University)

Abstract

While many countries employed digital contact tracing to contain the spread of SARS-CoV-2, the contribution of cospace-time interaction (i.e., individuals who shared the same space and time) to transmission and to super-spreading in the real world has seldom been systematically studied due to the lack of systematic sampling and testing of contacts. To address this issue, we utilized data from 2230 cases and 220,878 contacts with detailed epidemiological information during the Omicron outbreak in Beijing in 2022. We observed that contact number per day of tracing for individuals in dwelling, workplace, cospace-time interactions, and community settings could be described by gamma distribution with distinct parameters. Our findings revealed that 38% of traced transmissions occurred through cospace-time interactions whilst control measures were in place. However, using a mathematical model to incorporate contacts in different locations, we found that without control measures, cospace-time interactions contributed to only 11% (95%CI: 10%–12%) of transmissions and the super-spreading risk for this setting was 4% (95%CI: 3%–5%), both the lowest among all settings studied. These results suggest that public health measures should be optimized to achieve a balance between the benefits of digital contact tracing for cospace-time interactions and the challenges posed by contact tracing within the same setting.

Suggested Citation

  • Zengmiao Wang & Peng Yang & Ruixue Wang & Luca Ferretti & Lele Zhao & Shan Pei & Xiaoli Wang & Lei Jia & Daitao Zhang & Yonghong Liu & Ziyan Liu & Quanyi Wang & Christophe Fraser & Huaiyu Tian, 2024. "Estimating the contribution of setting-specific contacts to SARS-CoV-2 transmission using digital contact tracing data," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50487-7
    DOI: 10.1038/s41467-024-50487-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-50487-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-50487-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. O. Lloyd-Smith & S. J. Schreiber & P. E. Kopp & W. M. Getz, 2005. "Superspreading and the effect of individual variation on disease emergence," Nature, Nature, vol. 438(7066), pages 355-359, November.
    2. Thomas Hale & Noam Angrist & Rafael Goldszmidt & Beatriz Kira & Anna Petherick & Toby Phillips & Samuel Webster & Emily Cameron-Blake & Laura Hallas & Saptarshi Majumdar & Helen Tatlow, 2021. "A global panel database of pandemic policies (Oxford COVID-19 Government Response Tracker)," Nature Human Behaviour, Nature, vol. 5(4), pages 529-538, April.
    3. Caspar Geenen & Joren Raymenants & Sarah Gorissen & Jonathan Thibaut & Jodie McVernon & Natalie Lorent & Emmanuel André, 2023. "Individual level analysis of digital proximity tracing for COVID-19 in Belgium highlights major bottlenecks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Michelle Kendall & Daphne Tsallis & Chris Wymant & Andrea Francia & Yakubu Balogun & Xavier Didelot & Luca Ferretti & Christophe Fraser, 2023. "Epidemiological impacts of the NHS COVID-19 app in England and Wales throughout its first year," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Bjarke Frost Nielsen & Kim Sneppen & Lone Simonsen, 2023. "The counterintuitive implications of superspreading diseases," Nature Communications, Nature, vol. 14(1), pages 1-3, December.
    6. Luca Ferretti & Chris Wymant & James Petrie & Daphne Tsallis & Michelle Kendall & Alice Ledda & Francesco Di Lauro & Adam Fowler & Andrea Di Francia & Jasmina Panovska-Griffiths & Lucie Abeler-Dörner , 2024. "Digital measurement of SARS-CoV-2 transmission risk from 7 million contacts," Nature, Nature, vol. 626(7997), pages 145-150, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Judit Temesvary & Andrew Wei, 2021. "Domestic Lending and the Pandemic: How Does Banks' Exposure to Covid-19 Abroad Affect Their Lending in the United States?," Finance and Economics Discussion Series 2021-056r1, Board of Governors of the Federal Reserve System (U.S.), revised 17 Nov 2021.
    2. Jacqueline Ruth & Steffen Willwacher & Oliver Korn, 2022. "Acceptance of Digital Sports: A Study Showing the Rising Acceptance of Digital Health Activities Due to the SARS-CoV-19 Pandemic," IJERPH, MDPI, vol. 19(1), pages 1-16, January.
    3. Hannah Carver & Tracey Price & Danilo Falzon & Peter McCulloch & Tessa Parkes, 2022. "Stress and Wellbeing during the COVID-19 Pandemic: A Mixed-Methods Exploration of Frontline Homelessness Services Staff Experiences in Scotland," IJERPH, MDPI, vol. 19(6), pages 1-20, March.
    4. Phurichai Rungcharoenkitkul, 2021. "Macroeconomic effects of COVID‐19: A mid‐term review," Pacific Economic Review, Wiley Blackwell, vol. 26(4), pages 439-458, October.
    5. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    6. Carlos Díaz & Sebastian Fossati & Nicolás Trajtenberg, 2022. "Stay at home if you can: COVID‐19 stay‐at‐home guidelines and local crime," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 19(4), pages 1067-1113, December.
    7. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    8. Joël Cariolle & Florian Léon, 2022. "How internet helped firms to cope with COVID-19," Working Papers hal-03592617, HAL.
    9. Xiao Chen & Hanwei Huang & Jiandong Ju & Ruoyan Sun & Jialiang Zhang, 2022. "Endogenous cross-region human mobility and pandemics," CEP Discussion Papers dp1860, Centre for Economic Performance, LSE.
    10. Alejandro G. Graziano & Yuan Tian, 2023. "Trade disruptions along the global supply chain," Discussion Papers 2023-06, University of Nottingham, GEP.
    11. Khan, Nawab Ali & Azhar, Mohd & Rahman, Mohd Nayyer & Akhtar, Mohd Junaid, 2022. "Scale development and validation for usage of social networking sites during COVID-19," Technology in Society, Elsevier, vol. 70(C).
    12. Yekaterina Chzhen & Jennifer Symonds & Dympna Devine & Júlia Mikolai & Susan Harkness & Seaneen Sloan & Gabriela Martinez Sainz, 2022. "Learning in a Pandemic: Primary School children’s Emotional Engagement with Remote Schooling during the spring 2020 Covid-19 Lockdown in Ireland," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 15(4), pages 1517-1538, August.
    13. Mirko Licchetta & Giovanni Mattozzi & Rafal Raciborski & Rupert Willis, 2022. "Economic Adjustment in the Euro Area and the United States during the COVID-19 Crisis," European Economy - Discussion Papers 160, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    14. Moshe B Hoshen & Anthony H Burton & Themis J V Bowcock, 2007. "Simulating disease transmission dynamics at a multi-scale level," International Journal of Microsimulation, International Microsimulation Association, vol. 1(1), pages 26-34.
    15. Lucia Freira & Marco Sartorio & Cynthia Boruchowicz & Florencia Lopez Boo & Joaquin Navajas, 2021. "The interplay between partisanship, forecasted COVID-19 deaths, and support for preventive policies," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-10, December.
    16. Galil, Koresh & Varon, Eva, 2024. "National culture and banks stock volatility," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    17. Das, Saikat & Bose, Indranil & Sarkar, Uttam Kumar, 2023. "Predicting the outbreak of epidemics using a network-based approach," European Journal of Operational Research, Elsevier, vol. 309(2), pages 819-831.
    18. Luc E. Coffeng & Sake J. de Vlas, 2022. "Predicting epidemics and the impact of interventions in heterogeneous settings: Standard SEIR models are too pessimistic," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 28-35, November.
    19. Clemens, Jeffrey & Hoxie, Philip & Kearns, John & Veuger, Stan, 2023. "How did federal aid to states and localities affect testing and vaccine delivery?," Journal of Public Economics, Elsevier, vol. 225(C).
    20. Hammond, James & Siegal, Kim & Milner, Daniel & Elimu, Emmanuel & Vail, Taylor & Cathala, Paul & Gatera, Arsene & Karim, Azfar & Lee, Ja-Eun & Douxchamps, Sabine & Tu, Mai Thanh & Ouma, Emily & Lukuyu, 2022. "Perceived effects of COVID-19 restrictions on smallholder farmers: Evidence from seven lower- and middle-income countries," Agricultural Systems, Elsevier, vol. 198(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50487-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.