Author
Listed:
- Jaleal S Sanjak
- Anthony D Long
- Kevin R Thornton
Abstract
The genetic component of complex disease risk in humans remains largely unexplained. A corollary is that the allelic spectrum of genetic variants contributing to complex disease risk is unknown. Theoretical models that relate population genetic processes to the maintenance of genetic variation for quantitative traits may suggest profitable avenues for future experimental design. Here we use forward simulation to model a genomic region evolving under a balance between recurrent deleterious mutation and Gaussian stabilizing selection. We consider multiple genetic and demographic models, and several different methods for identifying genomic regions harboring variants associated with complex disease risk. We demonstrate that the model of gene action, relating genotype to phenotype, has a qualitative effect on several relevant aspects of the population genetic architecture of a complex trait. In particular, the genetic model impacts genetic variance component partitioning across the allele frequency spectrum and the power of statistical tests. Models with partial recessivity closely match the minor allele frequency distribution of significant hits from empirical genome-wide association studies without requiring homozygous effect sizes to be small. We highlight a particular gene-based model of incomplete recessivity that is appealing from first principles. Under that model, deleterious mutations in a genomic region partially fail to complement one another. This model of gene-based recessivity predicts the empirically observed inconsistency between twin and SNP based estimated of dominance heritability. Furthermore, this model predicts considerable levels of unexplained variance associated with intralocus epistasis. Our results suggest a need for improved statistical tools for region based genetic association and heritability estimation.Author Summary: Gene action determines how mutations affect phenotype. When placed in an evolutionary context, the details of the genotype-to-phenotype model can impact the maintenance of genetic variation for complex traits. Likewise, non-equilibrium demographic history may affect patterns of genetic variation. Here, we explore the impact of genetic model and population growth on distribution of genetic variance across the allele frequency spectrum underlying risk for a complex disease. Using forward-in-time population genetic simulations, we show that the genetic model has important impacts on the composition of variation for complex disease risk in a population. We explicitly simulate genome-wide association studies (GWAS) and perform heritability estimation on population samples. A particular model of gene-based partial recessivity, based on allelic non-complementation, aligns well with empirical results. This model is congruent with the dominance variance estimates from both SNPs and twins, and the minor allele frequency distribution of GWAS hits.
Suggested Citation
Jaleal S Sanjak & Anthony D Long & Kevin R Thornton, 2017.
"A Model of Compound Heterozygous, Loss-of-Function Alleles Is Broadly Consistent with Observations from Complex-Disease GWAS Datasets,"
PLOS Genetics, Public Library of Science, vol. 13(1), pages 1-30, January.
Handle:
RePEc:plo:pgen00:1006573
DOI: 10.1371/journal.pgen.1006573
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1006573. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.