IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1006573.html
   My bibliography  Save this article

A Model of Compound Heterozygous, Loss-of-Function Alleles Is Broadly Consistent with Observations from Complex-Disease GWAS Datasets

Author

Listed:
  • Jaleal S Sanjak
  • Anthony D Long
  • Kevin R Thornton

Abstract

The genetic component of complex disease risk in humans remains largely unexplained. A corollary is that the allelic spectrum of genetic variants contributing to complex disease risk is unknown. Theoretical models that relate population genetic processes to the maintenance of genetic variation for quantitative traits may suggest profitable avenues for future experimental design. Here we use forward simulation to model a genomic region evolving under a balance between recurrent deleterious mutation and Gaussian stabilizing selection. We consider multiple genetic and demographic models, and several different methods for identifying genomic regions harboring variants associated with complex disease risk. We demonstrate that the model of gene action, relating genotype to phenotype, has a qualitative effect on several relevant aspects of the population genetic architecture of a complex trait. In particular, the genetic model impacts genetic variance component partitioning across the allele frequency spectrum and the power of statistical tests. Models with partial recessivity closely match the minor allele frequency distribution of significant hits from empirical genome-wide association studies without requiring homozygous effect sizes to be small. We highlight a particular gene-based model of incomplete recessivity that is appealing from first principles. Under that model, deleterious mutations in a genomic region partially fail to complement one another. This model of gene-based recessivity predicts the empirically observed inconsistency between twin and SNP based estimated of dominance heritability. Furthermore, this model predicts considerable levels of unexplained variance associated with intralocus epistasis. Our results suggest a need for improved statistical tools for region based genetic association and heritability estimation.Author Summary: Gene action determines how mutations affect phenotype. When placed in an evolutionary context, the details of the genotype-to-phenotype model can impact the maintenance of genetic variation for complex traits. Likewise, non-equilibrium demographic history may affect patterns of genetic variation. Here, we explore the impact of genetic model and population growth on distribution of genetic variance across the allele frequency spectrum underlying risk for a complex disease. Using forward-in-time population genetic simulations, we show that the genetic model has important impacts on the composition of variation for complex disease risk in a population. We explicitly simulate genome-wide association studies (GWAS) and perform heritability estimation on population samples. A particular model of gene-based partial recessivity, based on allelic non-complementation, aligns well with empirical results. This model is congruent with the dominance variance estimates from both SNPs and twins, and the minor allele frequency distribution of GWAS hits.

Suggested Citation

  • Jaleal S Sanjak & Anthony D Long & Kevin R Thornton, 2017. "A Model of Compound Heterozygous, Loss-of-Function Alleles Is Broadly Consistent with Observations from Complex-Disease GWAS Datasets," PLOS Genetics, Public Library of Science, vol. 13(1), pages 1-30, January.
  • Handle: RePEc:plo:pgen00:1006573
    DOI: 10.1371/journal.pgen.1006573
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1006573
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1006573&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1006573?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benjamin M Neale & Manuel A Rivas & Benjamin F Voight & David Altshuler & Bernie Devlin & Marju Orho-Melander & Sekar Kathiresan & Shaun M Purcell & Kathryn Roeder & Mark J Daly, 2011. "Testing for an Unusual Distribution of Rare Variants," PLOS Genetics, Public Library of Science, vol. 7(3), pages 1-8, March.
    2. Chris C A Spencer & Zhan Su & Peter Donnelly & Jonathan Marchini, 2009. "Designing Genome-Wide Association Studies: Sample Size, Power, Imputation, and the Choice of Genotyping Chip," PLOS Genetics, Public Library of Science, vol. 5(5), pages 1-13, May.
    3. Teri A. Manolio & Francis S. Collins & Nancy J. Cox & David B. Goldstein & Lucia A. Hindorff & David J. Hunter & Mark I. McCarthy & Erin M. Ramos & Lon R. Cardon & Aravinda Chakravarti & Judy H. Cho &, 2009. "Finding the missing heritability of complex diseases," Nature, Nature, vol. 461(7265), pages 747-753, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruixue Fan & Shaw-Hwa Lo, 2013. "A Robust Model-free Approach for Rare Variants Association Studies Incorporating Gene-Gene and Gene-Environmental Interactions," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-14, December.
    2. Diana Chang & Alon Keinan, 2012. "Predicting Signatures of “Synthetic Associations” and “Natural Associations” from Empirical Patterns of Human Genetic Variation," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-9, July.
    3. Silviu-Alin Bacanu & Matthew R Nelson & John C Whittaker, 2012. "Comparison of Statistical Tests for Association between Rare Variants and Binary Traits," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-7, August.
    4. Kevin R Thornton & Andrew J Foran & Anthony D Long, 2013. "Properties and Modeling of GWAS when Complex Disease Risk Is Due to Non-Complementing, Deleterious Mutations in Genes of Large Effect," PLOS Genetics, Public Library of Science, vol. 9(2), pages 1-14, February.
    5. Ilias Georgakopoulos-Soares & Chengyu Deng & Vikram Agarwal & Candace S. Y. Chan & Jingjing Zhao & Fumitaka Inoue & Nadav Ahituv, 2023. "Transcription factor binding site orientation and order are major drivers of gene regulatory activity," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Zhongshang Yuan & Hong Liu & Xiaoshuai Zhang & Fangyu Li & Jinghua Zhao & Furen Zhang & Fuzhong Xue, 2013. "From Interaction to Co-Association —A Fisher r-To-z Transformation-Based Simple Statistic for Real World Genome-Wide Association Study," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-8, July.
    7. Chung-Feng Kao & Jia-Rou Liu & Hung Hung & Po-Hsiu Kuo, 2015. "A Robust GWSS Method to Simultaneously Detect Rare and Common Variants for Complex Disease," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-14, April.
    8. Lin Yuan & Chang-An Yuan & De-Shuang Huang, 2017. "FAACOSE: A Fast Adaptive Ant Colony Optimization Algorithm for Detecting SNP Epistasis," Complexity, Hindawi, vol. 2017, pages 1-10, September.
    9. Elodie Persyn & Richard Redon & Lise Bellanger & Christian Dina, 2018. "The impact of a fine-scale population stratification on rare variant association test results," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-17, December.
    10. Chang Lu & Jan Zaucha & Rihab Gam & Hai Fang & Smithers & Matt E. Oates & Miguel Bernabe-Rubio & James Williams & Natalie Zelenka & Arun Prasad Pandurangan & Himani Tandon & Hashem Shihab & Raju Kalai, 2023. "Hypothesis-free phenotype prediction within a genetics-first framework," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Wenjing Qi & Andrew S Allen & Yi-Ju Li, 2019. "Family-based association tests for rare variants with censored traits," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-17, January.
    12. Ian Barnett & Rajarshi Mukherjee & Xihong Lin, 2017. "The Generalized Higher Criticism for Testing SNP-Set Effects in Genetic Association Studies," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 64-76, January.
    13. Colin D Steer & Patrick Bolton & Jean Golding, 2015. "Preconception and Prenatal Environmental Factors Associated with Communication Impairments in 9 Year Old Children Using an Exposome-Wide Approach," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-26, March.
    14. María Soler Artigas & Louise V Wain & Nick Shrine & Tricia M McKeever & UK BiLEVE & Ian Sayers & Ian P Hall & Martin D Tobin, 2017. "Targeted Sequencing of Lung Function Loci in Chronic Obstructive Pulmonary Disease Cases and Controls," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-17, January.
    15. Bingxin Zhao & Fei Zou, 2022. "On polygenic risk scores for complex traits prediction," Biometrics, The International Biometric Society, vol. 78(2), pages 499-511, June.
    16. von Stumm, Sophie & Kandaswamy, Radhika & Maxwell, Jessye, 2023. "Gene-environment interplay in early life cognitive development," Intelligence, Elsevier, vol. 98(C).
    17. Celine A. Manigbas & Bharati Jadhav & Paras Garg & Mariya Shadrina & William Lee & Gabrielle Altman & Alejandro Martin-Trujillo & Andrew J. Sharp, 2024. "A phenome-wide association study of tandem repeat variation in 168,554 individuals from the UK Biobank," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Wan-Yu Lin & Xiang-Yang Lou & Guimin Gao & Nianjun Liu, 2014. "Rare Variant Association Testing by Adaptive Combination of P-values," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-7, January.
    19. Ai-Ru Hsieh & Dao-Peng Chen & Amrita Sengupta Chattopadhyay & Ying-Ju Li & Chien-Ching Chang & Cathy S J Fann, 2017. "A non-threshold region-specific method for detecting rare variants in complex diseases," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-16, November.
    20. Nanye Long & Samuel P Dickson & Jessica M Maia & Hee Shin Kim & Qianqian Zhu & Andrew S Allen, 2013. "Leveraging Prior Information to Detect Causal Variants via Multi-Variant Regression," PLOS Computational Biology, Public Library of Science, vol. 9(6), pages 1-11, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1006573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.