IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0120873.html
   My bibliography  Save this article

A Robust GWSS Method to Simultaneously Detect Rare and Common Variants for Complex Disease

Author

Listed:
  • Chung-Feng Kao
  • Jia-Rou Liu
  • Hung Hung
  • Po-Hsiu Kuo

Abstract

The rapid advances in sequencing technologies and the resulting next-generation sequencing data provide the opportunity to detect disease-associated variants with a better solution, in particular for low-frequency variants. Although both common and rare variants might exert their independent effects on the risk for the trait of interest, previous methods to detect the association effects rarely consider them simultaneously. We proposed a class of test statistics, the generalized weighted-sum statistic (GWSS), to detect disease associations in the presence of common and rare variants with a case-control study design. Information of rare variants was aggregated using a weighted sum method, while signal directions and strength of the variants were considered at the same time. Permutations were performed to obtain the empirical p-values of the test statistics. Our simulation showed that, compared to the existing methods, the GWSS method had better performance in most of the scenarios. The GWSS (in particular VDWSS-t) method is particularly robust for opposite association directions, association strength, and varying distributions of minor-allele frequencies. It is therefore promising for detecting disease-associated loci. For empirical data application, we also applied our GWSS method to the Genetic Analysis Workshop 17 data, and the results were consistent with the simulation, suggesting good performance of our method. As re-sequencing studies become more popular to identify putative disease loci, we recommend the use of this newly developed GWSS to detect associations with both common and rare variants.

Suggested Citation

  • Chung-Feng Kao & Jia-Rou Liu & Hung Hung & Po-Hsiu Kuo, 2015. "A Robust GWSS Method to Simultaneously Detect Rare and Common Variants for Complex Disease," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-14, April.
  • Handle: RePEc:plo:pone00:0120873
    DOI: 10.1371/journal.pone.0120873
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0120873
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0120873&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0120873?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David E. Reich & Michele Cargill & Stacey Bolk & James Ireland & Pardis C. Sabeti & Daniel J. Richter & Thomas Lavery & Rose Kouyoumjian & Shelli F. Farhadian & Ryk Ward & Eric S. Lander, 2001. "Linkage disequilibrium in the human genome," Nature, Nature, vol. 411(6834), pages 199-204, May.
    2. Benjamin M Neale & Manuel A Rivas & Benjamin F Voight & David Altshuler & Bernie Devlin & Marju Orho-Melander & Sekar Kathiresan & Shaun M Purcell & Kathryn Roeder & Mark J Daly, 2011. "Testing for an Unusual Distribution of Rare Variants," PLOS Genetics, Public Library of Science, vol. 7(3), pages 1-8, March.
    3. Brendan Maher, 2008. "Personal genomes: The case of the missing heritability," Nature, Nature, vol. 456(7218), pages 18-21, November.
    4. Iuliana Ionita-Laza & Joseph D Buxbaum & Nan M Laird & Christoph Lange, 2011. "A New Testing Strategy to Identify Rare Variants with Either Risk or Protective Effect on Disease," PLOS Genetics, Public Library of Science, vol. 7(2), pages 1-6, February.
    5. Dajiang J Liu & Suzanne M Leal, 2010. "A Novel Adaptive Method for the Analysis of Next-Generation Sequencing Data to Detect Complex Trait Associations with Rare Variants Due to Gene Main Effects and Interactions," PLOS Genetics, Public Library of Science, vol. 6(10), pages 1-14, October.
    6. Guosheng Su & Ole F Christensen & Tage Ostersen & Mark Henryon & Mogens S Lund, 2012. "Estimating Additive and Non-Additive Genetic Variances and Predicting Genetic Merits Using Genome-Wide Dense Single Nucleotide Polymorphism Markers," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-7, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elodie Persyn & Richard Redon & Lise Bellanger & Christian Dina, 2018. "The impact of a fine-scale population stratification on rare variant association test results," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-17, December.
    2. Zheng Xu & Song Yan & Cong Wu & Qing Duan & Sixia Chen & Yun Li, 2023. "Next-Generation Sequencing Data-Based Association Testing of a Group of Genetic Markers for Complex Responses Using a Generalized Linear Model Framework," Mathematics, MDPI, vol. 11(11), pages 1-28, June.
    3. Nanye Long & Samuel P Dickson & Jessica M Maia & Hee Shin Kim & Qianqian Zhu & Andrew S Allen, 2013. "Leveraging Prior Information to Detect Causal Variants via Multi-Variant Regression," PLOS Computational Biology, Public Library of Science, vol. 9(6), pages 1-11, June.
    4. Xinge Jessie Jeng & Zhongyin John Daye & Wenbin Lu & Jung-Ying Tzeng, 2016. "Rare Variants Association Analysis in Large-Scale Sequencing Studies at the Single Locus Level," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-23, June.
    5. Ren-Hua Chung & Wei-Yun Tsai & Eden R Martin, 2014. "Family-Based Association Test Using Both Common and Rare Variants and Accounting for Directions of Effects for Sequencing Data," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-7, September.
    6. Yuanjia Wang & Yin-Hsiu Chen & Qiong Yang, 2012. "Joint Rare Variant Association Test of the Average and Individual Effects for Sequencing Studies," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-13, March.
    7. Martin Ladouceur & Zari Dastani & Yurii S Aulchenko & Celia M T Greenwood & J Brent Richards, 2012. "The Empirical Power of Rare Variant Association Methods: Results from Sanger Sequencing in 1,998 Individuals," PLOS Genetics, Public Library of Science, vol. 8(2), pages 1-11, February.
    8. Daniel D Kinnamon & Ray E Hershberger & Eden R Martin, 2012. "Reconsidering Association Testing Methods Using Single-Variant Test Statistics as Alternatives to Pooling Tests for Sequence Data with Rare Variants," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-15, February.
    9. Zheng Xu, 2023. "Association Testing of a Group of Genetic Markers Based on Next-Generation Sequencing Data and Continuous Response Using a Linear Model Framework," Mathematics, MDPI, vol. 11(6), pages 1-32, March.
    10. Chuong B Do & David A Hinds & Uta Francke & Nicholas Eriksson, 2012. "Comparison of Family History and SNPs for Predicting Risk of Complex Disease," PLOS Genetics, Public Library of Science, vol. 8(10), pages 1-16, October.
    11. Starr, Alexandra & Riemann, Rainer, 2022. "Common genetic and environmental effects on cognitive ability, conscientiousness, self-perceived abilities, and school performance," Intelligence, Elsevier, vol. 93(C).
    12. Iuliana Ionita-Laza & Joseph D Buxbaum & Nan M Laird & Christoph Lange, 2011. "A New Testing Strategy to Identify Rare Variants with Either Risk or Protective Effect on Disease," PLOS Genetics, Public Library of Science, vol. 7(2), pages 1-6, February.
    13. Pietro Biroli & Titus Galama & Stephanie von Hinke & Hans van Kippersluis & Kevin Thom, 2022. "Economics and Econometrics of Gene-Environment Interplay," Bristol Economics Discussion Papers 22/759, School of Economics, University of Bristol, UK.
    14. Aida Bianco & Eusebio Chiefari & Carmelo G A Nobile & Daniela Foti & Maria Pavia & Antonio Brunetti, 2015. "The Association between HMGA1 rs146052672 Variant and Type 2 Diabetes: A Transethnic Meta-Analysis," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-15, August.
    15. Yumei Yang & Qishan Wang & Qiang Chen & Rongrong Liao & Xiangzhe Zhang & Hongjie Yang & Youmin Zheng & Zhiwu Zhang & Yuchun Pan, 2014. "A New Genotype Imputation Method with Tolerance to High Missing Rate and Rare Variants," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-7, June.
    16. Haipeng Li & Thomas Wiehe, 2013. "Coalescent Tree Imbalance and a Simple Test for Selective Sweeps Based on Microsatellite Variation," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-14, May.
    17. Shuxia Guo & Yunhua Hu & Yusong Ding & Jiaming Liu & Mei Zhang & Rulin Ma & Heng Guo & Kui Wang & Jia He & Yizhong Yan & Dongsheng Rui & Feng Sun & Lati Mu & Qiang Niu & Jingyu Zhang & Shugang Li, 2015. "Association between Eight Functional Polymorphisms and Haplotypes in the Cholesterol Ester Transfer Protein (CETP) Gene and Dyslipidemia in National Minority Adults in the Far West Region of China," IJERPH, MDPI, vol. 12(12), pages 1-14, December.
    18. Wenjing Qi & Andrew S Allen & Yi-Ju Li, 2019. "Family-based association tests for rare variants with censored traits," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-17, January.
    19. Li Qin & Wu Rongling, 2009. "A Multilocus Model for Constructing a Linkage Disequilibrium Map in Human Populations," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-27, February.
    20. Shpak, Max & Ni, Yang & Lu, Jie & Müller, Peter, 2017. "Variance in estimated pairwise genetic distance under high versus low coverage sequencing: The contribution of linkage disequilibrium," Theoretical Population Biology, Elsevier, vol. 117(C), pages 51-63.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0120873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.