IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0170222.html
   My bibliography  Save this article

Targeted Sequencing of Lung Function Loci in Chronic Obstructive Pulmonary Disease Cases and Controls

Author

Listed:
  • María Soler Artigas
  • Louise V Wain
  • Nick Shrine
  • Tricia M McKeever
  • UK BiLEVE
  • Ian Sayers
  • Ian P Hall
  • Martin D Tobin

Abstract

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide; smoking is the main risk factor for COPD, but genetic factors are also relevant contributors. Genome-wide association studies (GWAS) of the lung function measures used in the diagnosis of COPD have identified a number of loci, however association signals are often broad and collectively these loci only explain a small proportion of the heritability. In order to examine the association with COPD risk of genetic variants down to low allele frequencies, to aid fine-mapping of association signals and to explain more of the missing heritability, we undertook a targeted sequencing study in 300 COPD cases and 300 smoking controls for 26 loci previously reported to be associated with lung function. We used a pooled sequencing approach, with 12 pools of 25 individuals each, enabling high depth (30x) coverage per sample to be achieved. This pooled design maximised sample size and therefore power, but led to challenges during variant-calling since sequencing error rates and minor allele frequencies for rare variants can be very similar. For this reason we employed a rigorous quality control pipeline for variant detection which included the use of 3 independent calling algorithms. In order to avoid false positive associations we also developed tests to detect variants with potential batch effects and removed them before undertaking association testing. We tested for the effects of single variants and the combined effect of rare variants within a locus. We followed up the top signals with data available (only 67% of collapsing methods signals) in 4,249 COPD cases and 11,916 smoking controls from UK Biobank. We provide suggestive evidence for the combined effect of rare variants on COPD risk in TNXB and in sliding windows within MECOM and upstream of HHIP. These findings can lead to an improved understanding of the molecular pathways involved in the development of COPD.

Suggested Citation

  • María Soler Artigas & Louise V Wain & Nick Shrine & Tricia M McKeever & UK BiLEVE & Ian Sayers & Ian P Hall & Martin D Tobin, 2017. "Targeted Sequencing of Lung Function Loci in Chronic Obstructive Pulmonary Disease Cases and Controls," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-17, January.
  • Handle: RePEc:plo:pone00:0170222
    DOI: 10.1371/journal.pone.0170222
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0170222
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0170222&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0170222?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benjamin M Neale & Manuel A Rivas & Benjamin F Voight & David Altshuler & Bernie Devlin & Marju Orho-Melander & Sekar Kathiresan & Shaun M Purcell & Kathryn Roeder & Mark J Daly, 2011. "Testing for an Unusual Distribution of Rare Variants," PLOS Genetics, Public Library of Science, vol. 7(3), pages 1-8, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruixue Fan & Shaw-Hwa Lo, 2013. "A Robust Model-free Approach for Rare Variants Association Studies Incorporating Gene-Gene and Gene-Environmental Interactions," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-14, December.
    2. Chung-Feng Kao & Jia-Rou Liu & Hung Hung & Po-Hsiu Kuo, 2015. "A Robust GWSS Method to Simultaneously Detect Rare and Common Variants for Complex Disease," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-14, April.
    3. Elodie Persyn & Richard Redon & Lise Bellanger & Christian Dina, 2018. "The impact of a fine-scale population stratification on rare variant association test results," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-17, December.
    4. Wenjing Qi & Andrew S Allen & Yi-Ju Li, 2019. "Family-based association tests for rare variants with censored traits," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-17, January.
    5. Jaleal S Sanjak & Anthony D Long & Kevin R Thornton, 2017. "A Model of Compound Heterozygous, Loss-of-Function Alleles Is Broadly Consistent with Observations from Complex-Disease GWAS Datasets," PLOS Genetics, Public Library of Science, vol. 13(1), pages 1-30, January.
    6. Wan-Yu Lin & Xiang-Yang Lou & Guimin Gao & Nianjun Liu, 2014. "Rare Variant Association Testing by Adaptive Combination of P-values," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-7, January.
    7. Nanye Long & Samuel P Dickson & Jessica M Maia & Hee Shin Kim & Qianqian Zhu & Andrew S Allen, 2013. "Leveraging Prior Information to Detect Causal Variants via Multi-Variant Regression," PLOS Computational Biology, Public Library of Science, vol. 9(6), pages 1-11, June.
    8. Xinge Jessie Jeng & Zhongyin John Daye & Wenbin Lu & Jung-Ying Tzeng, 2016. "Rare Variants Association Analysis in Large-Scale Sequencing Studies at the Single Locus Level," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-23, June.
    9. Weihua Guan & Chun Li, 2014. "Design of DNA Pooling to Allow Incorporation of Covariates in Rare Variants Analysis," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-16, December.
    10. Wan-Yu Lin, 2014. "Adaptive Combination of P-Values for Family-Based Association Testing with Sequence Data," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-16, December.
    11. Silviu-Alin Bacanu & Matthew R Nelson & John C Whittaker, 2012. "Comparison of Statistical Tests for Association between Rare Variants and Binary Traits," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-7, August.
    12. Cameron Palmer & Itsik Pe’er, 2016. "Bias Characterization in Probabilistic Genotype Data and Improved Signal Detection with Multiple Imputation," PLOS Genetics, Public Library of Science, vol. 12(6), pages 1-17, June.
    13. ChangJiang Xu & Martin Ladouceur & Zari Dastani & J Brent Richards & Antonio Ciampi & Celia M T Greenwood, 2012. "Multiple Regression Methods Show Great Potential for Rare Variant Association Tests," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-10, August.
    14. Yukinori Okada & Dorothee Diogo & Jeffrey D Greenberg & Faten Mouassess & Walid A L Achkar & Robert S Fulton & Joshua C Denny & Namrata Gupta & Daniel Mirel & Stacy Gabriel & Gang Li & Joel M Kremer &, 2014. "Integration of Sequence Data from a Consanguineous Family with Genetic Data from an Outbred Population Identifies PLB1 as a Candidate Rheumatoid Arthritis Risk Gene," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-12, February.
    15. Ren-Hua Chung & Wei-Yun Tsai & Eden R Martin, 2014. "Family-Based Association Test Using Both Common and Rare Variants and Accounting for Directions of Effects for Sequencing Data," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-7, September.
    16. Boyang Fu & Ali Pazokitoroudi & Mukund Sudarshan & Zhengtong Liu & Lakshminarayanan Subramanian & Sriram Sankararaman, 2023. "Fast kernel-based association testing of non-linear genetic effects for biobank-scale data," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    17. Zhenchuan Wang & Qiuying Sha & Shuanglin Zhang, 2016. "Joint Analysis of Multiple Traits Using "Optimal" Maximum Heritability Test," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-12, March.
    18. Yao-Hwei Fang & Yen-Feng Chiu, 2013. "A Novel Support Vector Machine-Based Approach for Rare Variant Detection," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-9, August.
    19. Daniel D Kinnamon & Ray E Hershberger & Eden R Martin, 2012. "Reconsidering Association Testing Methods Using Single-Variant Test Statistics as Alternatives to Pooling Tests for Sequence Data with Rare Variants," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-15, February.
    20. Loukas Moutsianas & Vineeta Agarwala & Christian Fuchsberger & Jason Flannick & Manuel A Rivas & Kyle J Gaulton & Patrick K Albers & GoT2D Consortium & Gil McVean & Michael Boehnke & David Altshuler &, 2015. "The Power of Gene-Based Rare Variant Methods to Detect Disease-Associated Variation and Test Hypotheses About Complex Disease," PLOS Genetics, Public Library of Science, vol. 11(4), pages 1-24, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0170222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.