IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0188566.html
   My bibliography  Save this article

A non-threshold region-specific method for detecting rare variants in complex diseases

Author

Listed:
  • Ai-Ru Hsieh
  • Dao-Peng Chen
  • Amrita Sengupta Chattopadhyay
  • Ying-Ju Li
  • Chien-Ching Chang
  • Cathy S J Fann

Abstract

A region-specific method, NTR (non-threshold rare) variant detection method, was developed—it does not use the threshold for defining rare variants and accounts for directions of effects. NTR also considers linkage disequilibrium within the region and accommodates common and rare variants simultaneously. NTR weighs variants according to minor allele frequency and odds ratio to combine the effects of common and rare variants on disease occurrence into a single score and provides a test statistic to assess the significance of the score. In the simulations, under different effect sizes, the power of NTR increased as the effect size increased, and the type I error of our method was controlled well. Moreover, NTR was compared with several other existing methods, including the combined multivariate and collapsing method (CMC), weighted sum statistic method (WSS), sequence kernel association test (SKAT), and its modification, SKAT-O. NTR yields comparable or better power in simulations, especially when the effects of linkage disequilibrium between variants were at least moderate. In an analysis of diabetic nephropathy data, NTR detected more confirmed disease-related genes than the other aforementioned methods. NTR can thus be used as a complementary tool to help in dissecting the etiology of complex diseases.

Suggested Citation

  • Ai-Ru Hsieh & Dao-Peng Chen & Amrita Sengupta Chattopadhyay & Ying-Ju Li & Chien-Ching Chang & Cathy S J Fann, 2017. "A non-threshold region-specific method for detecting rare variants in complex diseases," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-16, November.
  • Handle: RePEc:plo:pone00:0188566
    DOI: 10.1371/journal.pone.0188566
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0188566
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0188566&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0188566?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bo Eskerod Madsen & Sharon R Browning, 2009. "A Groupwise Association Test for Rare Mutations Using a Weighted Sum Statistic," PLOS Genetics, Public Library of Science, vol. 5(2), pages 1-11, February.
    2. Teri A. Manolio & Francis S. Collins & Nancy J. Cox & David B. Goldstein & Lucia A. Hindorff & David J. Hunter & Mark I. McCarthy & Erin M. Ramos & Lon R. Cardon & Aravinda Chakravarti & Judy H. Cho &, 2009. "Finding the missing heritability of complex diseases," Nature, Nature, vol. 461(7265), pages 747-753, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruixue Fan & Shaw-Hwa Lo, 2013. "A Robust Model-free Approach for Rare Variants Association Studies Incorporating Gene-Gene and Gene-Environmental Interactions," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-14, December.
    2. Diana Chang & Alon Keinan, 2012. "Predicting Signatures of “Synthetic Associations” and “Natural Associations” from Empirical Patterns of Human Genetic Variation," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-9, July.
    3. Gaurav Bhatia & Vikas Bansal & Olivier Harismendy & Nicholas J Schork & Eric J Topol & Kelly Frazer & Vineet Bafna, 2010. "A Covering Method for Detecting Genetic Associations between Rare Variants and Common Phenotypes," PLOS Computational Biology, Public Library of Science, vol. 6(10), pages 1-12, October.
    4. Kevin R Thornton & Andrew J Foran & Anthony D Long, 2013. "Properties and Modeling of GWAS when Complex Disease Risk Is Due to Non-Complementing, Deleterious Mutations in Genes of Large Effect," PLOS Genetics, Public Library of Science, vol. 9(2), pages 1-14, February.
    5. Ilias Georgakopoulos-Soares & Chengyu Deng & Vikram Agarwal & Candace S. Y. Chan & Jingjing Zhao & Fumitaka Inoue & Nadav Ahituv, 2023. "Transcription factor binding site orientation and order are major drivers of gene regulatory activity," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Zhongshang Yuan & Hong Liu & Xiaoshuai Zhang & Fangyu Li & Jinghua Zhao & Furen Zhang & Fuzhong Xue, 2013. "From Interaction to Co-Association —A Fisher r-To-z Transformation-Based Simple Statistic for Real World Genome-Wide Association Study," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-8, July.
    7. Lin Yuan & Chang-An Yuan & De-Shuang Huang, 2017. "FAACOSE: A Fast Adaptive Ant Colony Optimization Algorithm for Detecting SNP Epistasis," Complexity, Hindawi, vol. 2017, pages 1-10, September.
    8. Chang Lu & Jan Zaucha & Rihab Gam & Hai Fang & Smithers & Matt E. Oates & Miguel Bernabe-Rubio & James Williams & Natalie Zelenka & Arun Prasad Pandurangan & Himani Tandon & Hashem Shihab & Raju Kalai, 2023. "Hypothesis-free phenotype prediction within a genetics-first framework," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Morgan Mayer-Jochimsen & Shannon Fast & Nathan L Tintle, 2013. "Assessing the Impact of Differential Genotyping Errors on Rare Variant Tests of Association," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-10, March.
    10. Ian Barnett & Rajarshi Mukherjee & Xihong Lin, 2017. "The Generalized Higher Criticism for Testing SNP-Set Effects in Genetic Association Studies," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 64-76, January.
    11. Colin D Steer & Patrick Bolton & Jean Golding, 2015. "Preconception and Prenatal Environmental Factors Associated with Communication Impairments in 9 Year Old Children Using an Exposome-Wide Approach," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-26, March.
    12. Bingxin Zhao & Fei Zou, 2022. "On polygenic risk scores for complex traits prediction," Biometrics, The International Biometric Society, vol. 78(2), pages 499-511, June.
    13. von Stumm, Sophie & Kandaswamy, Radhika & Maxwell, Jessye, 2023. "Gene-environment interplay in early life cognitive development," Intelligence, Elsevier, vol. 98(C).
    14. Jaleal S Sanjak & Anthony D Long & Kevin R Thornton, 2017. "A Model of Compound Heterozygous, Loss-of-Function Alleles Is Broadly Consistent with Observations from Complex-Disease GWAS Datasets," PLOS Genetics, Public Library of Science, vol. 13(1), pages 1-30, January.
    15. Celine A. Manigbas & Bharati Jadhav & Paras Garg & Mariya Shadrina & William Lee & Gabrielle Altman & Alejandro Martin-Trujillo & Andrew J. Sharp, 2024. "A phenome-wide association study of tandem repeat variation in 168,554 individuals from the UK Biobank," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Wan-Yu Lin & Xiang-Yang Lou & Guimin Gao & Nianjun Liu, 2014. "Rare Variant Association Testing by Adaptive Combination of P-values," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-7, January.
    17. Margaret Sunitha Selvaraj & Xihao Li & Zilin Li & Akhil Pampana & David Y. Zhang & Joseph Park & Stella Aslibekyan & Joshua C. Bis & Jennifer A. Brody & Brian E. Cade & Lee-Ming Chuang & Ren-Hua Chung, 2022. "Whole genome sequence analysis of blood lipid levels in >66,000 individuals," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    18. Bar Haim Y. & Booth James G. & Wells Martin T., 2012. "A Mixture-Model Approach for Parallel Testing for Unequal Variances," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(1), pages 1-21, January.
    19. Jennifer A. Smith & Wei Zhao & Kalyn Yasutake & Carmella August & Scott M. Ratliff & Jessica D. Faul & Eric Boerwinkle & Aravinda Chakravarti & Ana V. Diez Roux & Yan Gao & Michael E. Griswold & Gerar, 2017. "Gene-by-Psychosocial Factor Interactions Influence Diastolic Blood Pressure in European and African Ancestry Populations: Meta-Analysis of Four Cohort Studies," IJERPH, MDPI, vol. 14(12), pages 1-18, December.
    20. Remo Monti & Pia Rautenstrauch & Mahsa Ghanbari & Alva Rani James & Matthias Kirchler & Uwe Ohler & Stefan Konigorski & Christoph Lippert, 2022. "Identifying interpretable gene-biomarker associations with functionally informed kernel-based tests in 190,000 exomes," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0188566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.