IDEAS home Printed from https://ideas.repec.org/a/plo/pgen00/1003258.html
   My bibliography  Save this article

Properties and Modeling of GWAS when Complex Disease Risk Is Due to Non-Complementing, Deleterious Mutations in Genes of Large Effect

Author

Listed:
  • Kevin R Thornton
  • Andrew J Foran
  • Anthony D Long

Abstract

Current genome-wide association studies (GWAS) have high power to detect intermediate frequency SNPs making modest contributions to complex disease, but they are underpowered to detect rare alleles of large effect (RALE). This has led to speculation that the bulk of variation for most complex diseases is due to RALE. One concern with existing models of RALE is that they do not make explicit assumptions about the evolution of a phenotype and its molecular basis. Rather, much of the existing literature relies on arbitrary mapping of phenotypes onto genotypes obtained either from standard population-genetic simulation tools or from non-genetic models. We introduce a novel simulation of a 100-kilobase gene region, based on the standard definition of a gene, in which mutations are unconditionally deleterious, are continuously arising, have partially recessive and non-complementing effects on phenotype (analogous to what is widely observed for most Mendelian disorders), and are interspersed with neutral markers that can be genotyped. Genes evolving according to this model exhibit a characteristic GWAS signature consisting of an excess of marginally significant markers. Existing tests for an excess burden of rare alleles in cases have low power while a simple new statistic has high power to identify disease genes evolving under our model. The structure of linkage disequilibrium between causative mutations and significantly associated markers under our model differs fundamentally from that seen when rare causative markers are assumed to be neutral. Rather than tagging single haplotypes bearing a large number of rare causative alleles, we find that significant SNPs in a GWAS tend to tag single causative mutations of small effect relative to other mutations in the same gene. Our results emphasize the importance of evaluating the power to detect associations under models that are genetically and evolutionarily motivated. Author Summary: Current GWA studies typically only explain a small fraction of heritable variation in complex traits, resulting in speculation that a large fraction of variation in such traits may be due to rare alleles of large effect (RALE). The most parsimonious evolutionary mechanism that results in an inverse relationship between the frequency and effect size of causative alleles is an equilibrium between newly arising deleterious mutations and selection eliminating those mutations, resulting in an inverse relation between effect size and average frequency. This assumption is not built into many current models of RALE and, as a result, power calculations may be misleading. We use forward population genetic simulations to explore the ability of GWAS to detect genes in which unconditionally deleterious, partially recessive mutations arise each generation. Our model is based on the standard definition of a gene as a region within which loss-of-function mutations fail to complement, consistent with the multi-allelic basis for Mendelian disorders. Our model predicts that it may not be uncommon for single genes evolving under our model to contribute upwards of 5% to variation in a complex trait, and that such genes could be routinely detected via modified GWAS approaches.

Suggested Citation

  • Kevin R Thornton & Andrew J Foran & Anthony D Long, 2013. "Properties and Modeling of GWAS when Complex Disease Risk Is Due to Non-Complementing, Deleterious Mutations in Genes of Large Effect," PLOS Genetics, Public Library of Science, vol. 9(2), pages 1-14, February.
  • Handle: RePEc:plo:pgen00:1003258
    DOI: 10.1371/journal.pgen.1003258
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1003258
    Download Restriction: no

    File URL: https://journals.plos.org/plosgenetics/article/file?id=10.1371/journal.pgen.1003258&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pgen.1003258?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Teri A. Manolio & Francis S. Collins & Nancy J. Cox & David B. Goldstein & Lucia A. Hindorff & David J. Hunter & Mark I. McCarthy & Erin M. Ramos & Lon R. Cardon & Aravinda Chakravarti & Judy H. Cho &, 2009. "Finding the missing heritability of complex diseases," Nature, Nature, vol. 461(7265), pages 747-753, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ilias Georgakopoulos-Soares & Chengyu Deng & Vikram Agarwal & Candace S. Y. Chan & Jingjing Zhao & Fumitaka Inoue & Nadav Ahituv, 2023. "Transcription factor binding site orientation and order are major drivers of gene regulatory activity," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Ruixue Fan & Shaw-Hwa Lo, 2013. "A Robust Model-free Approach for Rare Variants Association Studies Incorporating Gene-Gene and Gene-Environmental Interactions," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-14, December.
    3. Zhongshang Yuan & Hong Liu & Xiaoshuai Zhang & Fangyu Li & Jinghua Zhao & Furen Zhang & Fuzhong Xue, 2013. "From Interaction to Co-Association —A Fisher r-To-z Transformation-Based Simple Statistic for Real World Genome-Wide Association Study," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-8, July.
    4. Lin Yuan & Chang-An Yuan & De-Shuang Huang, 2017. "FAACOSE: A Fast Adaptive Ant Colony Optimization Algorithm for Detecting SNP Epistasis," Complexity, Hindawi, vol. 2017, pages 1-10, September.
    5. Chang Lu & Jan Zaucha & Rihab Gam & Hai Fang & Smithers & Matt E. Oates & Miguel Bernabe-Rubio & James Williams & Natalie Zelenka & Arun Prasad Pandurangan & Himani Tandon & Hashem Shihab & Raju Kalai, 2023. "Hypothesis-free phenotype prediction within a genetics-first framework," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    6. Ian Barnett & Rajarshi Mukherjee & Xihong Lin, 2017. "The Generalized Higher Criticism for Testing SNP-Set Effects in Genetic Association Studies," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 64-76, January.
    7. Colin D Steer & Patrick Bolton & Jean Golding, 2015. "Preconception and Prenatal Environmental Factors Associated with Communication Impairments in 9 Year Old Children Using an Exposome-Wide Approach," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-26, March.
    8. Bingxin Zhao & Fei Zou, 2022. "On polygenic risk scores for complex traits prediction," Biometrics, The International Biometric Society, vol. 78(2), pages 499-511, June.
    9. von Stumm, Sophie & Kandaswamy, Radhika & Maxwell, Jessye, 2023. "Gene-environment interplay in early life cognitive development," Intelligence, Elsevier, vol. 98(C).
    10. Jaleal S Sanjak & Anthony D Long & Kevin R Thornton, 2017. "A Model of Compound Heterozygous, Loss-of-Function Alleles Is Broadly Consistent with Observations from Complex-Disease GWAS Datasets," PLOS Genetics, Public Library of Science, vol. 13(1), pages 1-30, January.
    11. Celine A. Manigbas & Bharati Jadhav & Paras Garg & Mariya Shadrina & William Lee & Gabrielle Altman & Alejandro Martin-Trujillo & Andrew J. Sharp, 2024. "A phenome-wide association study of tandem repeat variation in 168,554 individuals from the UK Biobank," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Ai-Ru Hsieh & Dao-Peng Chen & Amrita Sengupta Chattopadhyay & Ying-Ju Li & Chien-Ching Chang & Cathy S J Fann, 2017. "A non-threshold region-specific method for detecting rare variants in complex diseases," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-16, November.
    13. Diana Chang & Alon Keinan, 2012. "Predicting Signatures of “Synthetic Associations” and “Natural Associations” from Empirical Patterns of Human Genetic Variation," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-9, July.
    14. Margaret Sunitha Selvaraj & Xihao Li & Zilin Li & Akhil Pampana & David Y. Zhang & Joseph Park & Stella Aslibekyan & Joshua C. Bis & Jennifer A. Brody & Brian E. Cade & Lee-Ming Chuang & Ren-Hua Chung, 2022. "Whole genome sequence analysis of blood lipid levels in >66,000 individuals," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    15. Bar Haim Y. & Booth James G. & Wells Martin T., 2012. "A Mixture-Model Approach for Parallel Testing for Unequal Variances," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(1), pages 1-21, January.
    16. Jennifer A. Smith & Wei Zhao & Kalyn Yasutake & Carmella August & Scott M. Ratliff & Jessica D. Faul & Eric Boerwinkle & Aravinda Chakravarti & Ana V. Diez Roux & Yan Gao & Michael E. Griswold & Gerar, 2017. "Gene-by-Psychosocial Factor Interactions Influence Diastolic Blood Pressure in European and African Ancestry Populations: Meta-Analysis of Four Cohort Studies," IJERPH, MDPI, vol. 14(12), pages 1-18, December.
    17. Remo Monti & Pia Rautenstrauch & Mahsa Ghanbari & Alva Rani James & Matthias Kirchler & Uwe Ohler & Stefan Konigorski & Christoph Lippert, 2022. "Identifying interpretable gene-biomarker associations with functionally informed kernel-based tests in 190,000 exomes," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    18. Andrew K MacLeod & Gail Davies & Antony Payton & Albert Tenesa & Sarah E Harris & David Liewald & Xiayi Ke & Michelle Luciano & Lorna M Lopez & Alan J Gow & Janie Corley & Paul Redmond & Geraldine McN, 2012. "Genetic Copy Number Variation and General Cognitive Ability," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-9, December.
    19. Noah Zaitlen & Peter Kraft & Nick Patterson & Bogdan Pasaniuc & Gaurav Bhatia & Samuela Pollack & Alkes L Price, 2013. "Using Extended Genealogy to Estimate Components of Heritability for 23 Quantitative and Dichotomous Traits," PLOS Genetics, Public Library of Science, vol. 9(5), pages 1-11, May.
    20. Silviu-Alin Bacanu & Matthew R Nelson & John C Whittaker, 2012. "Comparison of Statistical Tests for Association between Rare Variants and Binary Traits," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-7, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pgen00:1003258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosgenetics (email available below). General contact details of provider: https://journals.plos.org/plosgenetics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.