IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002600.html
   My bibliography  Save this article

Predicting Signatures of “Synthetic Associations” and “Natural Associations” from Empirical Patterns of Human Genetic Variation

Author

Listed:
  • Diana Chang
  • Alon Keinan

Abstract

Genome-wide association studies (GWAS) have in recent years discovered thousands of associated markers for hundreds of phenotypes. However, associated loci often only explain a relatively small fraction of heritability and the link between association and causality has yet to be uncovered for most loci. Rare causal variants have been suggested as one scenario that may partially explain these shortcomings. Specifically, Dickson et al. recently reported simulations of rare causal variants that lead to association signals of common, tag single nucleotide polymorphisms, dubbed “synthetic associations”. However, an open question is what practical implications synthetic associations have for GWAS. Here, we explore the signatures exhibited by such “synthetic associations” and their implications based on patterns of genetic variation observed in human populations, thus accounting for human evolutionary history –a force disregarded in previous simulation studies. This is made possible by human population genetic data from HapMap 3 consisting of both resequencing and array-based genotyping data for the same set of individuals from multiple populations. We report that synthetic associations tend to be further away from the underlying risk alleles compared to “natural associations” (i.e. associations due to underlying common causal variants), but to a much lesser extent than previously predicted, with both the age and the effect size of the risk allele playing a part in this phenomenon. We find that while a synthetic association has a lower probability of capturing causal variants within its linkage disequilibrium block, sequencing around the associated variant need not extend substantially to have a high probability of capturing at least one causal variant. We also show that the minor allele frequency of synthetic associations is lower than of natural associations for most, but not all, loci that we explored. Finally, we find the variance in associated allele frequency to be a potential indicator of synthetic associations. Author Summary: Genome-wide association studies (GWAS), based on the hypothesis that common genetic variation underlies complex diseases, have found many sites in the genome associated with complex diseases. However, both the fraction of variation explained by these sites and the number of studies identifying causal variants remain low. While there are many possible explanations for these issues, we focus on one theory that suggests rare variants also play a significant role in complex diseases. We investigated the effect of rare causal variants as compared to common causal variants in simulated data with patterns of variation observed in actual human genetic data. As suggested by previous studies, we found that rare causal variants show different signatures in GWAS results. We explore in this study the implications of these differences in influencing the search for causal variants underlying the signal of association.

Suggested Citation

  • Diana Chang & Alon Keinan, 2012. "Predicting Signatures of “Synthetic Associations” and “Natural Associations” from Empirical Patterns of Human Genetic Variation," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-9, July.
  • Handle: RePEc:plo:pcbi00:1002600
    DOI: 10.1371/journal.pcbi.1002600
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002600
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002600&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002600?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David E. Reich & Michele Cargill & Stacey Bolk & James Ireland & Pardis C. Sabeti & Daniel J. Richter & Thomas Lavery & Rose Kouyoumjian & Shelli F. Farhadian & Ryk Ward & Eric S. Lander, 2001. "Linkage disequilibrium in the human genome," Nature, Nature, vol. 411(6834), pages 199-204, May.
    2. Bo Eskerod Madsen & Sharon R Browning, 2009. "A Groupwise Association Test for Rare Mutations Using a Weighted Sum Statistic," PLOS Genetics, Public Library of Science, vol. 5(2), pages 1-11, February.
    3. Chris C A Spencer & Zhan Su & Peter Donnelly & Jonathan Marchini, 2009. "Designing Genome-Wide Association Studies: Sample Size, Power, Imputation, and the Choice of Genotyping Chip," PLOS Genetics, Public Library of Science, vol. 5(5), pages 1-13, May.
    4. Brendan Maher, 2008. "Personal genomes: The case of the missing heritability," Nature, Nature, vol. 456(7218), pages 18-21, November.
    5. Teri A. Manolio & Francis S. Collins & Nancy J. Cox & David B. Goldstein & Lucia A. Hindorff & David J. Hunter & Mark I. McCarthy & Erin M. Ramos & Lon R. Cardon & Aravinda Chakravarti & Judy H. Cho &, 2009. "Finding the missing heritability of complex diseases," Nature, Nature, vol. 461(7265), pages 747-753, October.
    6. Yasunori Ogura & Denise K. Bonen & Naohiro Inohara & Dan L. Nicolae & Felicia F. Chen & Richard Ramos & Heidi Britton & Thomas Moran & Reda Karaliuskas & Richard H. Duerr & Jean-Paul Achkar & Steven R, 2001. "A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease," Nature, Nature, vol. 411(6837), pages 603-606, May.
    7. Jacques Fellay & Alexander J. Thompson & Dongliang Ge & Curtis E. Gumbs & Thomas J. Urban & Kevin V. Shianna & Latasha D. Little & Ping Qiu & Arthur H. Bertelsen & Mark Watson & Amelia Warner & Andrew, 2010. "ITPA gene variants protect against anaemia in patients treated for chronic hepatitis C," Nature, Nature, vol. 464(7287), pages 405-408, March.
    8. Thomas J Hoffmann & Nicholas J Marini & John S Witte, 2010. "Comprehensive Approach to Analyzing Rare Genetic Variants," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-9, November.
    9. Alex Coventry & Lara M. Bull-Otterson & Xiaoming Liu & Andrew G. Clark & Taylor J. Maxwell & Jacy Crosby & James E. Hixson & Thomas J. Rea & Donna M. Muzny & Lora R. Lewis & David A. Wheeler & Aniko S, 2010. "Deep resequencing reveals excess rare recent variants consistent with explosive population growth," Nature Communications, Nature, vol. 1(1), pages 1-6, December.
    10. Mark M Iles, 2008. "What Can Genome-Wide Association Studies Tell Us about the Genetics of Common Disease?," PLOS Genetics, Public Library of Science, vol. 4(2), pages 1-8, February.
    11. Jean-Pierre Hugot & Mathias Chamaillard & Habib Zouali & Suzanne Lesage & Jean-Pierre Cézard & Jacques Belaiche & Sven Almer & Curt Tysk & Colm A. O'Morain & Miquel Gassull & Vibeke Binder & Yigael Fi, 2001. "Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease," Nature, Nature, vol. 411(6837), pages 599-603, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruixue Fan & Shaw-Hwa Lo, 2013. "A Robust Model-free Approach for Rare Variants Association Studies Incorporating Gene-Gene and Gene-Environmental Interactions," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-14, December.
    2. Nanye Long & Samuel P Dickson & Jessica M Maia & Hee Shin Kim & Qianqian Zhu & Andrew S Allen, 2013. "Leveraging Prior Information to Detect Causal Variants via Multi-Variant Regression," PLOS Computational Biology, Public Library of Science, vol. 9(6), pages 1-11, June.
    3. Chung-Feng Kao & Jia-Rou Liu & Hung Hung & Po-Hsiu Kuo, 2015. "A Robust GWSS Method to Simultaneously Detect Rare and Common Variants for Complex Disease," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-14, April.
    4. von Stumm, Sophie & Kandaswamy, Radhika & Maxwell, Jessye, 2023. "Gene-environment interplay in early life cognitive development," Intelligence, Elsevier, vol. 98(C).
    5. Jaleal S Sanjak & Anthony D Long & Kevin R Thornton, 2017. "A Model of Compound Heterozygous, Loss-of-Function Alleles Is Broadly Consistent with Observations from Complex-Disease GWAS Datasets," PLOS Genetics, Public Library of Science, vol. 13(1), pages 1-30, January.
    6. Ai-Ru Hsieh & Dao-Peng Chen & Amrita Sengupta Chattopadhyay & Ying-Ju Li & Chien-Ching Chang & Cathy S J Fann, 2017. "A non-threshold region-specific method for detecting rare variants in complex diseases," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-16, November.
    7. Guo-Bo Chen & Yi Xu & Hai-Ming Xu & Ming D Li & Jun Zhu & Xiang-Yang Lou, 2011. "Practical and Theoretical Considerations in Study Design for Detecting Gene-Gene Interactions Using MDR and GMDR Approaches," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-9, February.
    8. Noah Zaitlen & Peter Kraft & Nick Patterson & Bogdan Pasaniuc & Gaurav Bhatia & Samuela Pollack & Alkes L Price, 2013. "Using Extended Genealogy to Estimate Components of Heritability for 23 Quantitative and Dichotomous Traits," PLOS Genetics, Public Library of Science, vol. 9(5), pages 1-11, May.
    9. Daniele Catanzaro & Martine Labbé & Luciano Porretta, 2011. "A Class Representative Model for Pure Parsimony Haplotyping under Uncertain Data," PLOS ONE, Public Library of Science, vol. 6(3), pages 1-10, March.
    10. Gaurav Bhatia & Vikas Bansal & Olivier Harismendy & Nicholas J Schork & Eric J Topol & Kelly Frazer & Vineet Bafna, 2010. "A Covering Method for Detecting Genetic Associations between Rare Variants and Common Phenotypes," PLOS Computational Biology, Public Library of Science, vol. 6(10), pages 1-12, October.
    11. ChangJiang Xu & Martin Ladouceur & Zari Dastani & J Brent Richards & Antonio Ciampi & Celia M T Greenwood, 2012. "Multiple Regression Methods Show Great Potential for Rare Variant Association Tests," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-10, August.
    12. Lucas Alvizi & Diogo Nani & Luciano Abreu Brito & Gerson Shigeru Kobayashi & Maria Rita Passos-Bueno & Roberto Mayor, 2023. "Neural crest E-cadherin loss drives cleft lip/palate by epigenetic modulation via pro-inflammatory gene–environment interaction," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Gustavo de los Campos & Ana I Vazquez & Rohan Fernando & Yann C Klimentidis & Daniel Sorensen, 2013. "Prediction of Complex Human Traits Using the Genomic Best Linear Unbiased Predictor," PLOS Genetics, Public Library of Science, vol. 9(7), pages 1-15, July.
    14. Young Lee & Suyeon Park & Sanghoon Moon & Juyoung Lee & Robert C. Elston & Woojoo Lee & Sungho Won, 2014. "On the Analysis of a Repeated Measure Design in Genome-Wide Association Analysis," IJERPH, MDPI, vol. 11(12), pages 1-21, November.
    15. Dongjun Chung & Can Yang & Cong Li & Joel Gelernter & Hongyu Zhao, 2014. "GPA: A Statistical Approach to Prioritizing GWAS Results by Integrating Pleiotropy and Annotation," PLOS Genetics, Public Library of Science, vol. 10(11), pages 1-14, November.
    16. C Ryan King & Paul J Rathouz & Dan L Nicolae, 2010. "An Evolutionary Framework for Association Testing in Resequencing Studies," PLOS Genetics, Public Library of Science, vol. 6(11), pages 1-11, November.
    17. Chuong B Do & David A Hinds & Uta Francke & Nicholas Eriksson, 2012. "Comparison of Family History and SNPs for Predicting Risk of Complex Disease," PLOS Genetics, Public Library of Science, vol. 8(10), pages 1-16, October.
    18. Kevin R Thornton & Andrew J Foran & Anthony D Long, 2013. "Properties and Modeling of GWAS when Complex Disease Risk Is Due to Non-Complementing, Deleterious Mutations in Genes of Large Effect," PLOS Genetics, Public Library of Science, vol. 9(2), pages 1-14, February.
    19. Tarik Asselah & Stefan Zeuzem & Vicente Soriano & Jean-Pierre Bronowicki & Ansgar W Lohse & Beat Müllhaupt & Marcus Schuchmann & Marc Bourlière & Maria Buti & Stuart K Roberts & Edward J Gane & Jerry , 2015. "ITPA Genotypes Predict Anemia but Do Not Affect Virological Response with Interferon-Free Faldaprevir, Deleobuvir, and Ribavirin for HCV Infection," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-13, December.
    20. Ilias Georgakopoulos-Soares & Chengyu Deng & Vikram Agarwal & Candace S. Y. Chan & Jingjing Zhao & Fumitaka Inoue & Nadav Ahituv, 2023. "Transcription factor binding site orientation and order are major drivers of gene regulatory activity," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.