IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0207677.html
   My bibliography  Save this article

The impact of a fine-scale population stratification on rare variant association test results

Author

Listed:
  • Elodie Persyn
  • Richard Redon
  • Lise Bellanger
  • Christian Dina

Abstract

Population stratification is a well-known confounding factor in both common and rare variant association analyses. Rare variants tend to be more geographically clustered than common variants, because of their more recent origin. However, it is not yet clear if population stratification at a very fine scale (neighboring administrative regions within a country) would lead to statistical bias in rare variant analyses. As the inclusion of convenience controls from external studies is indeed a common procedure, in order to increase the power to detect genetic associations, this problem is important. We studied through simulation the impact of a fine scale population structure on different rare variant association strategies, assessing type I error and power. We showed that principal component analysis (PCA) based methods of adjustment for population stratification adequately corrected type I error inflation at the largest geographical scales, but not at finest scales. We also showed in our simulations that adding controls obviously increased power, but at a considerably lower level when controls were drawn from another population.

Suggested Citation

  • Elodie Persyn & Richard Redon & Lise Bellanger & Christian Dina, 2018. "The impact of a fine-scale population stratification on rare variant association test results," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-17, December.
  • Handle: RePEc:plo:pone00:0207677
    DOI: 10.1371/journal.pone.0207677
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0207677
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0207677&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0207677?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Elodie Persyn & Matilde Karakachoff & Solena Le Scouarnec & Camille Le Clézio & Dominique Campion & French Exome Consortium & Jean-Jacques Schott & Richard Redon & Lise Bellanger & Christian Dina, 2017. "DoEstRare: A statistical test to identify local enrichments in rare genomic variants associated with disease," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-20, July.
    2. Benjamin M Neale & Manuel A Rivas & Benjamin F Voight & David Altshuler & Bernie Devlin & Marju Orho-Melander & Sekar Kathiresan & Shaun M Purcell & Kathryn Roeder & Mark J Daly, 2011. "Testing for an Unusual Distribution of Rare Variants," PLOS Genetics, Public Library of Science, vol. 7(3), pages 1-8, March.
    3. Yun-Ching Chen & Hannah Carter & Jennifer Parla & Melissa Kramer & Fernando S Goes & Mehdi Pirooznia & Peter P Zandi & W Richard McCombie & James B Potash & Rachel Karchin, 2013. "A Hybrid Likelihood Model for Sequence-Based Disease Association Studies," PLOS Genetics, Public Library of Science, vol. 9(1), pages 1-18, January.
    4. Robert B. Davies, 1980. "The Distribution of a Linear Combination of χ2 Random Variables," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(3), pages 323-333, November.
    5. Nick Patterson & Alkes L Price & David Reich, 2006. "Population Structure and Eigenanalysis," PLOS Genetics, Public Library of Science, vol. 2(12), pages 1-20, December.
    6. Timothy D O’Connor & Adam Kiezun & Michael Bamshad & Stephen S Rich & Joshua D Smith & Emily Turner & NHLBIGO Exome Sequencing Project & ESP Population Genetics, Statistical Analysis Working Group & S, 2013. "Fine-Scale Patterns of Population Stratification Confound Rare Variant Association Tests," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-10, July.
    7. Wan-Yu Lin, 2014. "Association Testing of Clustered Rare Causal Variants in Case-Control Studies," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-6, April.
    8. Dajiang J Liu & Suzanne M Leal, 2010. "A Novel Adaptive Method for the Analysis of Next-Generation Sequencing Data to Detect Complex Trait Associations with Rare Variants Due to Gene Main Effects and Interactions," PLOS Genetics, Public Library of Science, vol. 6(10), pages 1-14, October.
    9. Marie-Claude Babron & Marie de Tayrac & Douglas N Rutledge & Eleftheria Zeggini & Emmanuelle Génin, 2012. "Rare and Low Frequency Variant Stratification in the UK Population: Description and Impact on Association Tests," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-9, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chung-Feng Kao & Jia-Rou Liu & Hung Hung & Po-Hsiu Kuo, 2015. "A Robust GWSS Method to Simultaneously Detect Rare and Common Variants for Complex Disease," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-14, April.
    2. Gyaneshwer Chaubey & Anurag Kadian & Saroj Bala & Vadlamudi Raghavendra Rao, 2015. "Genetic Affinity of the Bhil, Kol and Gond Mentioned in Epic Ramayana," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-11, June.
    3. Estavoyer, Maxime & François, Olivier, 2022. "Theoretical analysis of principal components in an umbrella model of intraspecific evolution," Theoretical Population Biology, Elsevier, vol. 148(C), pages 11-21.
    4. Escanciano, Juan Carlos & Jacho-Chávez, David T., 2010. "Approximating the critical values of Cramér-von Mises tests in general parametric conditional specifications," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 625-636, March.
    5. Hyosik Jang & Ian M Ehrenreich, 2012. "Genome-Wide Characterization of Genetic Variation in the Unicellular, Green Alga Chlamydomonas reinhardtii," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    6. Xiaofeng Cai & Xuepeng Sun & Chenxi Xu & Honghe Sun & Xiaoli Wang & Chenhui Ge & Zhonghua Zhang & Quanxi Wang & Zhangjun Fei & Chen Jiao & Quanhua Wang, 2021. "Genomic analyses provide insights into spinach domestication and the genetic basis of agronomic traits," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    7. Lee, Anthony J. & Hibbs, Courtney & Wright, Margaret J. & Martin, Nicholas G. & Keller, Matthew C. & Zietsch, Brendan P., 2017. "Assessing the accuracy of perceptions of intelligence based on heritable facial features," Intelligence, Elsevier, vol. 64(C), pages 1-8.
    8. Thompson Katherine L. & Linnen Catherine R. & Kubatko Laura, 2016. "Tree-based quantitative trait mapping in the presence of external covariates," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(6), pages 473-490, December.
    9. Nicolas Städler & Sach Mukherjee, 2017. "Two-sample testing in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 225-246, January.
    10. Jacobo Pardo-Seco & Alberto Gómez-Carballa & Jorge Amigo & Federico Martinón-Torres & Antonio Salas, 2014. "A Genome-Wide Study of Modern-Day Tuscans: Revisiting Herodotus's Theory on the Origin of the Etruscans," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-11, September.
    11. Mahmood Kharrati-Kopaei, 2021. "On the exact distribution of the likelihood ratio test statistic for testing the homogeneity of the scale parameters of several inverse Gaussian distributions," Computational Statistics, Springer, vol. 36(2), pages 1123-1138, June.
    12. Ilja M Nolte & Chris Wallace & Stephen J Newhouse & Daryl Waggott & Jingyuan Fu & Nicole Soranzo & Rhian Gwilliam & Panos Deloukas & Irina Savelieva & Dongling Zheng & Chrysoula Dalageorgou & Martin F, 2009. "Common Genetic Variation Near the Phospholamban Gene Is Associated with Cardiac Repolarisation: Meta-Analysis of Three Genome-Wide Association Studies," PLOS ONE, Public Library of Science, vol. 4(7), pages 1-10, July.
    13. Hoicheong Siu & Li Jin & Momiao Xiong, 2012. "Manifold Learning for Human Population Structure Studies," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-18, January.
    14. Andre Krumel Portella & Afroditi Papantoni & Catherine Paquet & Spencer Moore & Keri Shiels Rosch & Stewart Mostofsky & Richard S Lee & Kimberly R Smith & Robert Levitan & Patricia Pelufo Silveira & S, 2020. "Predicted DRD4 prefrontal gene expression moderates snack intake and stress perception in response to the environment in adolescents," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-20, June.
    15. A. Basu & A. Mandal & N. Martin & L. Pardo, 2018. "Testing Composite Hypothesis Based on the Density Power Divergence," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 222-262, November.
    16. Lindsay Fernández-Rhodes & Jennifer R Malinowski & Yujie Wang & Ran Tao & Nathan Pankratz & Janina M Jeff & Sachiko Yoneyama & Cara L Carty & V Wendy Setiawan & Loic Le Marchand & Christopher Haiman &, 2018. "The genetic underpinnings of variation in ages at menarche and natural menopause among women from the multi-ethnic Population Architecture using Genomics and Epidemiology (PAGE) Study: A trans-ethnic ," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-21, July.
    17. Liu, Huan & Tang, Yongqiang & Zhang, Hao Helen, 2009. "A new chi-square approximation to the distribution of non-negative definite quadratic forms in non-central normal variables," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 853-856, February.
    18. Peña-Malavera Andrea & Bruno Cecilia & Fernandez Elmer & Balzarini Monica, 2014. "Comparison of algorithms to infer genetic population structure from unlinked molecular markers," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(4), pages 391-402, August.
    19. Chi-Chun Liu & David Witonsky & Anna Gosling & Ju Hyeon Lee & Harald Ringbauer & Richard Hagan & Nisha Patel & Raphaela Stahl & John Novembre & Mark Aldenderfer & Christina Warinner & Anna Di Rienzo &, 2022. "Ancient genomes from the Himalayas illuminate the genetic history of Tibetans and their Tibeto-Burman speaking neighbors," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    20. Yunxuan Jiang & Karen N. Conneely & Michael P. Epstein, 2018. "Robust Rare-Variant Association Tests for Quantitative Traits in General Pedigrees," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(3), pages 491-505, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0207677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.