IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1008068.html
   My bibliography  Save this article

Neural surprise in somatosensory Bayesian learning

Author

Listed:
  • Sam Gijsen
  • Miro Grundei
  • Robert T Lange
  • Dirk Ostwald
  • Felix Blankenburg

Abstract

Tracking statistical regularities of the environment is important for shaping human behavior and perception. Evidence suggests that the brain learns environmental dependencies using Bayesian principles. However, much remains unknown about the employed algorithms, for somesthesis in particular. Here, we describe the cortical dynamics of the somatosensory learning system to investigate both the form of the generative model as well as its neural surprise signatures. Specifically, we recorded EEG data from 40 participants subjected to a somatosensory roving-stimulus paradigm and performed single-trial modeling across peri-stimulus time in both sensor and source space. Our Bayesian model selection procedure indicates that evoked potentials are best described by a non-hierarchical learning model that tracks transitions between observations using leaky integration. From around 70ms post-stimulus onset, secondary somatosensory cortices are found to represent confidence-corrected surprise as a measure of model inadequacy. Indications of Bayesian surprise encoding, reflecting model updating, are found in primary somatosensory cortex from around 140ms. This dissociation is compatible with the idea that early surprise signals may control subsequent model update rates. In sum, our findings support the hypothesis that early somatosensory processing reflects Bayesian perceptual learning and contribute to an understanding of its precise mechanisms.Author summary: Our environment features statistical regularities, such as a drop of rain predicting imminent rainfall. Despite the importance for behavior and survival, much remains unknown about how these dependencies are learned, particularly for somatosensation. As surprise signalling about novel observations indicates a mismatch between one’s beliefs and the world, it has been hypothesized that surprise computation plays an important role in perceptual learning. By analyzing EEG data from human participants receiving sequences of tactile stimulation, we compare different formulations of surprise and investigate the employed underlying learning model. Our results indicate that the brain estimates transitions between observations. Furthermore, we identified different signatures of surprise computation and thereby provide a dissociation of the neural correlates of belief inadequacy and belief updating. Specifically, early surprise responses from around 70ms were found to signal the need for changes to the model, with encoding of its subsequent updating occurring from around 140ms. These results provide insights into how somatosensory surprise signals may contribute to the learning of environmental statistics.

Suggested Citation

  • Sam Gijsen & Miro Grundei & Robert T Lange & Dirk Ostwald & Felix Blankenburg, 2021. "Neural surprise in somatosensory Bayesian learning," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-36, February.
  • Handle: RePEc:plo:pcbi00:1008068
    DOI: 10.1371/journal.pcbi.1008068
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008068
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1008068&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1008068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Caroline A. Runyan & Eugenio Piasini & Stefano Panzeri & Christopher D. Harvey, 2017. "Distinct timescales of population coding across cortex," Nature, Nature, vol. 548(7665), pages 92-96, August.
    2. Florent Meyniel & Maxime Maheu & Stanislas Dehaene, 2016. "Human Inferences about Sequences: A Minimal Transition Probability Model," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-26, December.
    3. Will D Penny & Klaas E Stephan & Jean Daunizeau & Maria J Rosa & Karl J Friston & Thomas M Schofield & Alex P Leff, 2010. "Comparing Families of Dynamic Causal Models," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-14, March.
    4. Elise Payzan-LeNestour & Peter Bossaerts, 2011. "Risk, Unexpected Uncertainty, and Estimation Uncertainty: Bayesian Learning in Unstable Settings," PLOS Computational Biology, Public Library of Science, vol. 7(1), pages 1-14, January.
    5. Jonathan Rubin & Nachum Ulanovsky & Israel Nelken & Naftali Tishby, 2016. "The Representation of Prediction Error in Auditory Cortex," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-28, August.
    6. Florent Meyniel & Daniel Schlunegger & Stanislas Dehaene, 2015. "The Sense of Confidence during Probabilistic Learning: A Normative Account," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-25, June.
    7. Florent Meyniel, 2020. "Brain dynamics for confidence-weighted learning," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-27, June.
    8. Micha Heilbron & Florent Meyniel, 2019. "Confidence resets reveal hierarchical adaptive learning in humans," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-24, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He A Xu & Alireza Modirshanechi & Marco P Lehmann & Wulfram Gerstner & Michael H Herzog, 2021. "Novelty is not surprise: Human exploratory and adaptive behavior in sequential decision-making," PLOS Computational Biology, Public Library of Science, vol. 17(6), pages 1-32, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Florent Meyniel, 2020. "Brain dynamics for confidence-weighted learning," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-27, June.
    2. Micha Heilbron & Florent Meyniel, 2019. "Confidence resets reveal hierarchical adaptive learning in humans," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-24, April.
    3. Dimitrije Marković & Andrea M F Reiter & Stefan J Kiebel, 2019. "Predicting change: Approximate inference under explicit representation of temporal structure in changing environments," PLOS Computational Biology, Public Library of Science, vol. 15(1), pages 1-31, January.
    4. Elyse H Norton & Luigi Acerbi & Wei Ji Ma & Michael S Landy, 2019. "Human online adaptation to changes in prior probability," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-26, July.
    5. He A Xu & Alireza Modirshanechi & Marco P Lehmann & Wulfram Gerstner & Michael H Herzog, 2021. "Novelty is not surprise: Human exploratory and adaptive behavior in sequential decision-making," PLOS Computational Biology, Public Library of Science, vol. 17(6), pages 1-32, June.
    6. Payam Piray & Nathaniel D Daw, 2020. "A simple model for learning in volatile environments," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-26, July.
    7. Dimitrije Marković & Jan Gläscher & Peter Bossaerts & John O’Doherty & Stefan J Kiebel, 2015. "Modeling the Evolution of Beliefs Using an Attentional Focus Mechanism," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-34, October.
    8. Hu, Yingyao & Kayaba, Yutaka & Shum, Matthew, 2013. "Nonparametric learning rules from bandit experiments: The eyes have it!," Games and Economic Behavior, Elsevier, vol. 81(C), pages 215-231.
    9. Moe Okayasu & Tensei Inukai & Daiki Tanaka & Kaho Tsumura & Reiko Shintaki & Masaki Takeda & Kiyoshi Nakahara & Koji Jimura, 2023. "The Stroop effect involves an excitatory–inhibitory fronto-cerebellar loop," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    10. Daniel S Kluger & Nico Broers & Marlen A Roehe & Moritz F Wurm & Niko A Busch & Ricarda I Schubotz, 2020. "Exploitation of local and global information in predictive processing," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-17, April.
    11. Sarah Bricault & Miranda Dawson & Jiyoung Lee & Mitul Desai & Miriam Schwalm & Kevin Sunho Chung & Elizabeth DeTienne & Erinn Fagan & Nan Li & Andrew Becker & Sureshkumar Muthupalani & Jan-Philipp Frä, 2024. "Peripheral contributions to resting state brain dynamics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Marine Hainguerlot & Jean-Christophe Vergnaud & Vincent de Gardelle, 2018. "Metacognitive ability predicts learning cue-stimulus associations in the absence of external feedback," PSE-Ecole d'économie de Paris (Postprint) hal-01761531, HAL.
    13. Ahmed A Moustafa & Jony Sheynin & Catherine E Myers, 2015. "The Role of Informative and Ambiguous Feedback in Avoidance Behavior: Empirical and Computational Findings," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-21, December.
    14. Maël Lebreton & Karin Bacily & Stefano Palminteri & Jan B Engelmann, 2019. "Contextual influence on confidence judgments in human reinforcement learning," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-27, April.
    15. Philipp Schustek & Rubén Moreno-Bote, 2018. "Instance-based generalization for human judgments about uncertainty," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-27, June.
    16. Peter M C Harrison & Roberta Bianco & Maria Chait & Marcus T Pearce, 2020. "PPM-Decay: A computational model of auditory prediction with memory decay," PLOS Computational Biology, Public Library of Science, vol. 16(11), pages 1-41, November.
    17. Kobe Desender & Luc Vermeylen & Tom Verguts, 2022. "Dynamic influences on static measures of metacognition," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Jill X O'Reilly & Saad Jbabdi & Matthew F S Rushworth & Timothy E J Behrens, 2013. "Brain Systems for Probabilistic and Dynamic Prediction: Computational Specificity and Integration," PLOS Biology, Public Library of Science, vol. 11(9), pages 1-14, September.
    19. Kyuhyun Choi & Eugenio Piasini & Edgar Díaz-Hernández & Luigim Vargas Cifuentes & Nathan T. Henderson & Elizabeth N. Holly & Manivannan Subramaniyan & Charles R. Gerfen & Marc V. Fuccillo, 2023. "Distributed processing for value-based choice by prelimbic circuits targeting anterior-posterior dorsal striatal subregions in male mice," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    20. Amir Dezfouli & Bernard W Balleine, 2013. "Actions, Action Sequences and Habits: Evidence That Goal-Directed and Habitual Action Control Are Hierarchically Organized," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.