IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48302-4.html
   My bibliography  Save this article

Spatiotemporal brain hierarchies of auditory memory recognition and predictive coding

Author

Listed:
  • L. Bonetti

    (Aarhus University & The Royal Academy of Music
    University of Oxford
    University of Oxford
    University of Bologna)

  • G. Fernández-Rubio

    (Aarhus University & The Royal Academy of Music)

  • F. Carlomagno

    (Aarhus University & The Royal Academy of Music
    University of Bari Aldo Moro)

  • M. Dietz

    (Aarhus University)

  • D. Pantazis

    (Massachusetts Institute of Technology (MIT))

  • P. Vuust

    (Aarhus University & The Royal Academy of Music)

  • M. L. Kringelbach

    (Aarhus University & The Royal Academy of Music
    University of Oxford
    University of Oxford)

Abstract

Our brain is constantly extracting, predicting, and recognising key spatiotemporal features of the physical world in order to survive. While neural processing of visuospatial patterns has been extensively studied, the hierarchical brain mechanisms underlying conscious recognition of auditory sequences and the associated prediction errors remain elusive. Using magnetoencephalography (MEG), we describe the brain functioning of 83 participants during recognition of previously memorised musical sequences and systematic variations. The results show feedforward connections originating from auditory cortices, and extending to the hippocampus, anterior cingulate gyrus, and medial cingulate gyrus. Simultaneously, we observe backward connections operating in the opposite direction. Throughout the sequences, the hippocampus and cingulate gyrus maintain the same hierarchical level, except for the final tone, where the cingulate gyrus assumes the top position within the hierarchy. The evoked responses of memorised sequences and variations engage the same hierarchical brain network but systematically differ in terms of temporal dynamics, strength, and polarity. Furthermore, induced-response analysis shows that alpha and beta power is stronger for the variations, while gamma power is enhanced for the memorised sequences. This study expands on the predictive coding theory by providing quantitative evidence of hierarchical brain mechanisms during conscious memory and predictive processing of auditory sequences.

Suggested Citation

  • L. Bonetti & G. Fernández-Rubio & F. Carlomagno & M. Dietz & D. Pantazis & P. Vuust & M. L. Kringelbach, 2024. "Spatiotemporal brain hierarchies of auditory memory recognition and predictive coding," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48302-4
    DOI: 10.1038/s41467-024-48302-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48302-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48302-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Will D Penny & Klaas E Stephan & Jean Daunizeau & Maria J Rosa & Karl J Friston & Thomas M Schofield & Alex P Leff, 2010. "Comparing Families of Dynamic Causal Models," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-14, March.
    2. Gustavo Deco & Diego Vidaurre & Morten L. Kringelbach, 2021. "Revisiting the global workspace orchestrating the hierarchical organization of the human brain," Nature Human Behaviour, Nature, vol. 5(4), pages 497-511, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitrije Marković & Jan Gläscher & Peter Bossaerts & John O’Doherty & Stefan J Kiebel, 2015. "Modeling the Evolution of Beliefs Using an Attentional Focus Mechanism," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-34, October.
    2. Moe Okayasu & Tensei Inukai & Daiki Tanaka & Kaho Tsumura & Reiko Shintaki & Masaki Takeda & Kiyoshi Nakahara & Koji Jimura, 2023. "The Stroop effect involves an excitatory–inhibitory fronto-cerebellar loop," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Andreea O Diaconescu & Christoph Mathys & Lilian A E Weber & Jean Daunizeau & Lars Kasper & Ekaterina I Lomakina & Ernst Fehr & Klaas E Stephan, 2014. "Inferring on the Intentions of Others by Hierarchical Bayesian Learning," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-19, September.
    4. Falk Lieder & Klaas E Stephan & Jean Daunizeau & Marta I Garrido & Karl J Friston, 2013. "A Neurocomputational Model of the Mismatch Negativity," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-14, November.
    5. Ahmed A Moustafa & Jony Sheynin & Catherine E Myers, 2015. "The Role of Informative and Ambiguous Feedback in Avoidance Behavior: Empirical and Computational Findings," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-21, December.
    6. Sam Gijsen & Miro Grundei & Robert T Lange & Dirk Ostwald & Felix Blankenburg, 2021. "Neural surprise in somatosensory Bayesian learning," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-36, February.
    7. repec:dau:papers:123456789/9572 is not listed on IDEAS
    8. Giovanni Leone & Charlotte Postel & Alison Mary & Florence Fraisse & Thomas Vallée & Fausto Viader & Vincent Sayette & Denis Peschanski & Jaques Dayan & Francis Eustache & Pierre Gagnepain, 2022. "Altered predictive control during memory suppression in PTSD," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    9. Amir Dezfouli & Bernard W Balleine, 2013. "Actions, Action Sequences and Habits: Evidence That Goal-Directed and Habitual Action Control Are Hierarchically Organized," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-14, December.
    10. Jean Daunizeau & Kerstin Preuschoff & Karl Friston & Klaas Stephan, 2011. "Optimizing Experimental Design for Comparing Models of Brain Function," PLOS Computational Biology, Public Library of Science, vol. 7(11), pages 1-18, November.
    11. Fabien Vinckier & Lionel Rigoux & Irma T Kurniawan & Chen Hu & Sacha Bourgeois-Gironde & Jean Daunizeau & Mathias Pessiglione, 2019. "Sour grapes and sweet victories: How actions shape preferences," PLOS Computational Biology, Public Library of Science, vol. 15(1), pages 1-24, January.
    12. Eduardo A Aponte & Dario Schöbi & Klaas E Stephan & Jakob Heinzle, 2017. "The Stochastic Early Reaction, Inhibition, and late Action (SERIA) model for antisaccades," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-36, August.
    13. Jean Daunizeau & Vincent Adam & Lionel Rigoux, 2014. "VBA: A Probabilistic Treatment of Nonlinear Models for Neurobiological and Behavioural Data," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-16, January.
    14. Hyunwoo Jang & George A. Mashour & Anthony G. Hudetz & Zirui Huang, 2024. "Measuring the dynamic balance of integration and segregation underlying consciousness, anesthesia, and sleep in humans," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    15. Melody K Morris & Julio Saez-Rodriguez & David C Clarke & Peter K Sorger & Douglas A Lauffenburger, 2011. "Training Signaling Pathway Maps to Biochemical Data with Constrained Fuzzy Logic: Quantitative Analysis of Liver Cell Responses to Inflammatory Stimuli," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-20, March.
    16. Ang Li & Haiyang Liu & Xu Lei & Yini He & Qian Wu & Yan Yan & Xin Zhou & Xiaohan Tian & Yingjie Peng & Shangzheng Huang & Kaixin Li & Meng Wang & Yuqing Sun & Hao Yan & Cheng Zhang & Sheng He & Ruquan, 2023. "Hierarchical fluctuation shapes a dynamic flow linked to states of consciousness," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    17. Alizée Lopez-Persem & Lionel Rigoux & Sacha Bourgeois-Gironde & Jean Daunizeau & Mathias Pessiglione, 2017. "Choose, rate or squeeze: Comparison of economic value functions elicited by different behavioral tasks," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-18, November.
    18. Li Liu & Amit Vira & Emma Friedman & Jennifer Minas & Donald Bolger & Tali Bitan & James Booth, 2010. "Children with Reading Disability Show Brain Differences in Effective Connectivity for Visual, but Not Auditory Word Comprehension," PLOS ONE, Public Library of Science, vol. 5(10), pages 1-11, October.
    19. Richard P Mann & Andrea Perna & Daniel Strömbom & Roman Garnett & James E Herbert-Read & David J T Sumpter & Ashley J W Ward, 2013. "Multi-scale Inference of Interaction Rules in Animal Groups Using Bayesian Model Selection," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-13, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48302-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.