IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000709.html
   My bibliography  Save this article

Comparing Families of Dynamic Causal Models

Author

Listed:
  • Will D Penny
  • Klaas E Stephan
  • Jean Daunizeau
  • Maria J Rosa
  • Karl J Friston
  • Thomas M Schofield
  • Alex P Leff

Abstract

Mathematical models of scientific data can be formally compared using Bayesian model evidence. Previous applications in the biological sciences have mainly focussed on model selection in which one first selects the model with the highest evidence and then makes inferences based on the parameters of that model. This “best model” approach is very useful but can become brittle if there are a large number of models to compare, and if different subjects use different models. To overcome this shortcoming we propose the combination of two further approaches: (i) family level inference and (ii) Bayesian model averaging within families. Family level inference removes uncertainty about aspects of model structure other than the characteristic of interest. For example: What are the inputs to the system? Is processing serial or parallel? Is it linear or nonlinear? Is it mediated by a single, crucial connection? We apply Bayesian model averaging within families to provide inferences about parameters that are independent of further assumptions about model structure. We illustrate the methods using Dynamic Causal Models of brain imaging data.Author Summary: Bayesian model comparison provides a formal method for evaluating different computational models in the biological sciences. Emerging application domains include dynamical models of neuronal and biochemical networks based on differential equations. Much previous work in this area has focussed on selecting the single best model. This approach is useful but can become brittle if there are a large number of models to compare and if different subjects use different models. This paper shows that these problems can be overcome with the use of Family Level Inference and Bayesian Model Averaging within model families.

Suggested Citation

  • Will D Penny & Klaas E Stephan & Jean Daunizeau & Maria J Rosa & Karl J Friston & Thomas M Schofield & Alex P Leff, 2010. "Comparing Families of Dynamic Causal Models," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-14, March.
  • Handle: RePEc:plo:pcbi00:1000709
    DOI: 10.1371/journal.pcbi.1000709
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000709
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000709&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000709?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Karl Friston, 2009. "Causal Modelling and Brain Connectivity in Functional Magnetic Resonance Imaging," PLOS Biology, Public Library of Science, vol. 7(2), pages 1-6, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giovanni Leone & Charlotte Postel & Alison Mary & Florence Fraisse & Thomas Vallée & Fausto Viader & Vincent Sayette & Denis Peschanski & Jaques Dayan & Francis Eustache & Pierre Gagnepain, 2022. "Altered predictive control during memory suppression in PTSD," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Ahmed A Moustafa & Jony Sheynin & Catherine E Myers, 2015. "The Role of Informative and Ambiguous Feedback in Avoidance Behavior: Empirical and Computational Findings," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-21, December.
    3. Dimitrije Marković & Jan Gläscher & Peter Bossaerts & John O’Doherty & Stefan J Kiebel, 2015. "Modeling the Evolution of Beliefs Using an Attentional Focus Mechanism," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-34, October.
    4. L. Bonetti & G. Fernández-Rubio & F. Carlomagno & M. Dietz & D. Pantazis & P. Vuust & M. L. Kringelbach, 2024. "Spatiotemporal brain hierarchies of auditory memory recognition and predictive coding," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    5. Amir Dezfouli & Bernard W Balleine, 2013. "Actions, Action Sequences and Habits: Evidence That Goal-Directed and Habitual Action Control Are Hierarchically Organized," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-14, December.
    6. Fabien Vinckier & Lionel Rigoux & Irma T Kurniawan & Chen Hu & Sacha Bourgeois-Gironde & Jean Daunizeau & Mathias Pessiglione, 2019. "Sour grapes and sweet victories: How actions shape preferences," PLOS Computational Biology, Public Library of Science, vol. 15(1), pages 1-24, January.
    7. Eduardo A Aponte & Dario Schöbi & Klaas E Stephan & Jakob Heinzle, 2017. "The Stochastic Early Reaction, Inhibition, and late Action (SERIA) model for antisaccades," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-36, August.
    8. Sam Gijsen & Miro Grundei & Robert T Lange & Dirk Ostwald & Felix Blankenburg, 2021. "Neural surprise in somatosensory Bayesian learning," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-36, February.
    9. Jean Daunizeau & Vincent Adam & Lionel Rigoux, 2014. "VBA: A Probabilistic Treatment of Nonlinear Models for Neurobiological and Behavioural Data," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-16, January.
    10. Moe Okayasu & Tensei Inukai & Daiki Tanaka & Kaho Tsumura & Reiko Shintaki & Masaki Takeda & Kiyoshi Nakahara & Koji Jimura, 2023. "The Stroop effect involves an excitatory–inhibitory fronto-cerebellar loop," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    11. Andreea O Diaconescu & Christoph Mathys & Lilian A E Weber & Jean Daunizeau & Lars Kasper & Ekaterina I Lomakina & Ernst Fehr & Klaas E Stephan, 2014. "Inferring on the Intentions of Others by Hierarchical Bayesian Learning," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-19, September.
    12. Jean Daunizeau & Kerstin Preuschoff & Karl Friston & Klaas Stephan, 2011. "Optimizing Experimental Design for Comparing Models of Brain Function," PLOS Computational Biology, Public Library of Science, vol. 7(11), pages 1-18, November.
    13. Melody K Morris & Julio Saez-Rodriguez & David C Clarke & Peter K Sorger & Douglas A Lauffenburger, 2011. "Training Signaling Pathway Maps to Biochemical Data with Constrained Fuzzy Logic: Quantitative Analysis of Liver Cell Responses to Inflammatory Stimuli," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-20, March.
    14. repec:dau:papers:123456789/9572 is not listed on IDEAS
    15. Falk Lieder & Klaas E Stephan & Jean Daunizeau & Marta I Garrido & Karl J Friston, 2013. "A Neurocomputational Model of the Mismatch Negativity," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-14, November.
    16. Alizée Lopez-Persem & Lionel Rigoux & Sacha Bourgeois-Gironde & Jean Daunizeau & Mathias Pessiglione, 2017. "Choose, rate or squeeze: Comparison of economic value functions elicited by different behavioral tasks," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-18, November.
    17. Li Liu & Amit Vira & Emma Friedman & Jennifer Minas & Donald Bolger & Tali Bitan & James Booth, 2010. "Children with Reading Disability Show Brain Differences in Effective Connectivity for Visual, but Not Auditory Word Comprehension," PLOS ONE, Public Library of Science, vol. 5(10), pages 1-11, October.
    18. Richard P Mann & Andrea Perna & Daniel Strömbom & Roman Garnett & James E Herbert-Read & David J T Sumpter & Ashley J W Ward, 2013. "Multi-scale Inference of Interaction Rules in Animal Groups Using Bayesian Model Selection," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Tang & Steven L Bressler & Chad M Sylvester & Gordon L Shulman & Maurizio Corbetta, 2012. "Measuring Granger Causality between Cortical Regions from Voxelwise fMRI BOLD Signals with LASSO," PLOS Computational Biology, Public Library of Science, vol. 8(5), pages 1-14, May.
    2. Oscar Miranda-Dominguez & Brian D Mills & Samuel D Carpenter & Kathleen A Grant & Christopher D Kroenke & Joel T Nigg & Damien A Fair, 2014. "Connectotyping: Model Based Fingerprinting of the Functional Connectome," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-16, November.
    3. Liane Schmidt & Maël Lebreton & Marie-Laure Cléry-Melin & Jean Daunizeau & Mathias Pessiglione, 2012. "Neural Mechanisms Underlying Motivation of Mental Versus Physical Effort," PLOS Biology, Public Library of Science, vol. 10(2), pages 1-13, February.
    4. Tian Ge & Keith M Kendrick & Jianfeng Feng, 2009. "A Novel Extended Granger Causal Model Approach Demonstrates Brain Hemispheric Differences during Face Recognition Learning," PLOS Computational Biology, Public Library of Science, vol. 5(11), pages 1-13, November.
    5. Vasilii V. Kuimov & Konstantin V. Simonov & Eva V. Shcherbenko & Liudmila V. Iushkova, 2023. "Ecosystems and Their Digital Models as Factors of Algocognitive Culture and Transition to New Technological Order," Social Sciences, MDPI, vol. 12(4), pages 1-11, March.
    6. Qiang Luo & Tian Ge & Fabian Grabenhorst & Jianfeng Feng & Edmund T Rolls, 2013. "Attention-Dependent Modulation of Cortical Taste Circuits Revealed by Granger Causality with Signal-Dependent Noise," PLOS Computational Biology, Public Library of Science, vol. 9(10), pages 1-15, October.
    7. Luca M. Possati, 2021. "Freud and the algorithm: neuropsychoanalysis as a framework to understand artificial general intelligence," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-19, December.
    8. repec:jss:jstsof:44:i13 is not listed on IDEAS

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.