IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0231021.html
   My bibliography  Save this article

Exploitation of local and global information in predictive processing

Author

Listed:
  • Daniel S Kluger
  • Nico Broers
  • Marlen A Roehe
  • Moritz F Wurm
  • Niko A Busch
  • Ricarda I Schubotz

Abstract

While prediction errors have been established to instigate learning through model adaptation, recent studies have stressed the role of model-compliant events in predictive processing. Specifically, probabilistic information at critical points in time (so-called checkpoints) has been suggested to be sampled in order to evaluate the internal model, particularly in uncertain contexts. This way, initial model-based expectations are iteratively reaffirmed under uncertainty, even in the absence of prediction errors. Using electroencephalography (EEG), the present study aimed to investigate the interplay of such global uncertainty information and local adjustment cues prompting on-line adjustments of expectations. Within a stream of single digits, participants were to detect ordered sequences (i.e., 3-4-5-6-7) that had a regular length of five digits and were occasionally extended to seven digits. Over time, these extensions were either rare (low irreducible uncertainty) or frequent (high uncertainty) and could be unexpected or indicated by incidental colour cues. Accounting for cue information, an N400 component was revealed as the correlate of locally unexpected (vs expected) outcomes, reflecting effortful integration of incongruous information. As for model-compliant information, multivariate pattern decoding within the P3b time frame demonstrated effective exploitation of local (adjustment cues vs non-informative analogues) and global information (high vs low uncertainty regular endings) sampled from probabilistic events. Finally, superior fit of a global model (disregarding local adjustments) compared to a local model (including local adjustments) in a representational similarity analysis underscored the precedence of global reference frames in hierarchical predictive processing. Overall, results suggest that just like error-induced model adaptation, model evaluation is not limited to either local or global information. Following the hierarchical organisation of predictive processing, model evaluation too can occur at several levels of the processing hierarchy.

Suggested Citation

  • Daniel S Kluger & Nico Broers & Marlen A Roehe & Moritz F Wurm & Niko A Busch & Ricarda I Schubotz, 2020. "Exploitation of local and global information in predictive processing," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-17, April.
  • Handle: RePEc:plo:pone00:0231021
    DOI: 10.1371/journal.pone.0231021
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0231021
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0231021&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0231021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Archy O. de Berker & Robb B. Rutledge & Christoph Mathys & Louise Marshall & Gemma F. Cross & Raymond J. Dolan & Sven Bestmann, 2016. "Computations of uncertainty mediate acute stress responses in humans," Nature Communications, Nature, vol. 7(1), pages 1-11, April.
    2. Milena Rabovsky & Steven S. Hansen & James L. McClelland, 2018. "Modelling the N400 brain potential as change in a probabilistic representation of meaning," Nature Human Behaviour, Nature, vol. 2(9), pages 693-705, September.
    3. Elise Payzan-LeNestour & Peter Bossaerts, 2011. "Risk, Unexpected Uncertainty, and Estimation Uncertainty: Bayesian Learning in Unstable Settings," PLOS Computational Biology, Public Library of Science, vol. 7(1), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Payam Piray & Nathaniel D Daw, 2020. "A simple model for learning in volatile environments," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-26, July.
    2. Corgnet, Brice & Hernán-González, Roberto & Kujal, Praveen, 2020. "On booms that never bust: Ambiguity in experimental asset markets with bubbles," Journal of Economic Dynamics and Control, Elsevier, vol. 110(C).
    3. Micha Heilbron & Florent Meyniel, 2019. "Confidence resets reveal hierarchical adaptive learning in humans," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-24, April.
    4. Hu, Yingyao & Kayaba, Yutaka & Shum, Matthew, 2013. "Nonparametric learning rules from bandit experiments: The eyes have it!," Games and Economic Behavior, Elsevier, vol. 81(C), pages 215-231.
    5. Mateus Joffily & Giorgio Coricelli, 2013. "Emotional Valence and the Free-Energy Principle," Post-Print halshs-00834063, HAL.
    6. Dimitrije Marković & Andrea M F Reiter & Stefan J Kiebel, 2019. "Predicting change: Approximate inference under explicit representation of temporal structure in changing environments," PLOS Computational Biology, Public Library of Science, vol. 15(1), pages 1-31, January.
    7. Elizabeth Lomas & Julie McLeod, 2017. "Engaging with change: Information and communication technology professionals’ perspectives on change in the context of the ‘Brexit’ vote," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-26, November.
    8. Brice Corgnet & Simon Gaechter & Roberto Hernán González, 2020. "Working too much for too little: stochastic rewards cause work addiction," Working Papers 2007, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    9. Sam Gijsen & Miro Grundei & Robert T Lange & Dirk Ostwald & Felix Blankenburg, 2021. "Neural surprise in somatosensory Bayesian learning," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-36, February.
    10. Philipp Schustek & Rubén Moreno-Bote, 2018. "Instance-based generalization for human judgments about uncertainty," PLOS Computational Biology, Public Library of Science, vol. 14(6), pages 1-27, June.
    11. Giovanni Leone & Charlotte Postel & Alison Mary & Florence Fraisse & Thomas Vallée & Fausto Viader & Vincent Sayette & Denis Peschanski & Jaques Dayan & Francis Eustache & Pierre Gagnepain, 2022. "Altered predictive control during memory suppression in PTSD," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    12. Thomas P. Reber & Sina Mackay & Marcel Bausch & Marcel S. Kehl & Valeri Borger & Rainer Surges & Florian Mormann, 2023. "Single-neuron mechanisms of neural adaptation in the human temporal lobe," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    13. Jill X O'Reilly & Saad Jbabdi & Matthew F S Rushworth & Timothy E J Behrens, 2013. "Brain Systems for Probabilistic and Dynamic Prediction: Computational Specificity and Integration," PLOS Biology, Public Library of Science, vol. 11(9), pages 1-14, September.
    14. Toby Wise & Jochen Michely & Peter Dayan & Raymond J Dolan, 2019. "A computational account of threat-related attentional bias," PLOS Computational Biology, Public Library of Science, vol. 15(10), pages 1-21, October.
    15. Candace M. Raio & Benjamin B. Lu & Michael Grubb & Grant S. Shields & George M. Slavich & Paul Glimcher, 2022. "Cumulative lifetime stressor exposure assessed by the STRAIN predicts economic ambiguity aversion," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    16. Sang Wan Lee & John P O’Doherty & Shinsuke Shimojo, 2015. "Neural Computations Mediating One-Shot Learning in the Human Brain," PLOS Biology, Public Library of Science, vol. 13(4), pages 1-36, April.
    17. Payam Piray & Nathaniel D. Daw, 2024. "Computational processes of simultaneous learning of stochasticity and volatility in humans," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    18. Nazanin Mohammadi Sepahvand & Elisabeth Stöttinger & James Danckert & Britt Anderson, 2014. "Sequential Decisions: A Computational Comparison of Observational and Reinforcement Accounts," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-8, April.
    19. Fletcher, Cameron S. & Ganegodage, K. Renuka & Hildenbrand, Marian D. & Rambaldi, Alicia N., 2022. "The behaviour of property prices when affected by infrequent floods," Land Use Policy, Elsevier, vol. 122(C).
    20. Florent Meyniel & Daniel Schlunegger & Stanislas Dehaene, 2015. "The Sense of Confidence during Probabilistic Learning: A Normative Account," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-25, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0231021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.