IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54032-4.html
   My bibliography  Save this article

Predictive learning shapes the representational geometry of the human brain

Author

Listed:
  • Antonino Greco

    (University of Tübingen
    University of Tübingen
    University of Tübingen)

  • Julia Moser

    (University of Tübingen
    University of Minnesota)

  • Hubert Preissl

    (University of Tübingen
    German Center for Mental Health (DZPG)
    German Center for Diabetes Research (DZD)
    University Hospital of Tübingen)

  • Markus Siegel

    (University of Tübingen
    University of Tübingen
    University of Tübingen
    German Center for Mental Health (DZPG))

Abstract

Predictive coding theories propose that the brain constantly updates internal models to minimize prediction errors and optimize sensory processing. However, the neural mechanisms that link prediction error encoding and optimization of sensory representations remain unclear. Here, we provide evidence how predictive learning shapes the representational geometry of the human brain. We recorded magnetoencephalography (MEG) in humans listening to acoustic sequences with different levels of regularity. We found that the brain aligns its representational geometry to match the statistical structure of the sensory inputs, by clustering temporally contiguous and predictable stimuli. Crucially, the magnitude of this representational shift correlates with the synergistic encoding of prediction errors in a network of high-level and sensory areas. Our findings suggest that, in response to the statistical regularities of the environment, large-scale neural interactions engaged in predictive processing modulate the representational content of sensory areas to enhance sensory processing.

Suggested Citation

  • Antonino Greco & Julia Moser & Hubert Preissl & Markus Siegel, 2024. "Predictive learning shapes the representational geometry of the human brain," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54032-4
    DOI: 10.1038/s41467-024-54032-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54032-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54032-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Gloria G. Parras & Javier Nieto-Diego & Guillermo V. Carbajal & Catalina Valdés-Baizabal & Carles Escera & Manuel S. Malmierca, 2017. "Neurons along the auditory pathway exhibit a hierarchical organization of prediction error," Nature Communications, Nature, vol. 8(1), pages 1-17, December.
    3. Ivan Voitov & Thomas D. Mrsic-Flogel, 2022. "Cortical feedback loops bind distributed representations of working memory," Nature, Nature, vol. 608(7922), pages 381-389, August.
    4. Shohei Furutachi & Alexis D. Franklin & Andreea M. Aldea & Thomas D. Mrsic-Flogel & Sonja B. Hofer, 2024. "Cooperative thalamocortical circuit mechanism for sensory prediction errors," Nature, Nature, vol. 633(8029), pages 398-406, September.
    5. Gianpaolo Demarchi & Gaëtan Sanchez & Nathan Weisz, 2019. "Automatic and feature-specific prediction-related neural activity in the human auditory system," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    6. Samuel J Gershman, 2015. "A Unifying Probabilistic View of Associative Learning," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-20, November.
    7. Frank Gelens & Juho Äijälä & Louis Roberts & Misako Komatsu & Cem Uran & Michael A. Jensen & Kai J. Miller & Robin A. A. Ince & Max Garagnani & Martin Vinck & Andres Canales-Johnson, 2024. "Distributed representations of prediction error signals across the cortical hierarchy are synergistic," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    8. Nicholas A. Steinmetz & Peter Zatka-Haas & Matteo Carandini & Kenneth D. Harris, 2019. "Distributed coding of choice, action and engagement across the mouse brain," Nature, Nature, vol. 576(7786), pages 266-273, December.
    9. Aniek Schoups & Rufin Vogels & Ning Qian & Guy Orban, 2001. "Practising orientation identification improves orientation coding in V1 neurons," Nature, Nature, vol. 412(6846), pages 549-553, August.
    10. Florent Meyniel & Maxime Maheu & Stanislas Dehaene, 2016. "Human Inferences about Sequences: A Minimal Transition Probability Model," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-26, December.
    11. Hamed Nili & Cai Wingfield & Alexander Walther & Li Su & William Marslen-Wilson & Nikolaus Kriegeskorte, 2014. "A Toolbox for Representational Similarity Analysis," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-11, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frank Gelens & Juho Äijälä & Louis Roberts & Misako Komatsu & Cem Uran & Michael A. Jensen & Kai J. Miller & Robin A. A. Ince & Max Garagnani & Martin Vinck & Andres Canales-Johnson, 2024. "Distributed representations of prediction error signals across the cortical hierarchy are synergistic," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Ming Bo Cai & Nicolas W Schuck & Jonathan W Pillow & Yael Niv, 2019. "Representational structure or task structure? Bias in neural representational similarity analysis and a Bayesian method for reducing bias," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-30, May.
    3. Máté Aller & Agoston Mihalik & Uta Noppeney, 2022. "Audiovisual adaptation is expressed in spatial and decisional codes," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Kotaro Ishizu & Shosuke Nishimoto & Yutaro Ueoka & Akihiro Funamizu, 2024. "Localized and global representation of prior value, sensory evidence, and choice in male mouse cerebral cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Hannart, Alexis & Naveau, Philippe, 2014. "Estimating high dimensional covariance matrices: A new look at the Gaussian conjugate framework," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 149-162.
    6. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    7. Avagyan, Vahe & Nogales, Francisco J., 2015. "D-trace Precision Matrix Estimation Using Adaptive Lasso Penalties," DES - Working Papers. Statistics and Econometrics. WS 21775, Universidad Carlos III de Madrid. Departamento de Estadística.
    8. Mishra, Anil V., 2016. "Foreign bias in Australian-domiciled mutual fund holdings," Pacific-Basin Finance Journal, Elsevier, vol. 39(C), pages 101-123.
    9. Valentina Krenz & Arjen Alink & Tobias Sommer & Benno Roozendaal & Lars Schwabe, 2023. "Time-dependent memory transformation in hippocampus and neocortex is semantic in nature," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Hannah Muysers & Hung-Ling Chen & Johannes Hahn & Shani Folschweiller & Torfi Sigurdsson & Jonas-Frederic Sauer & Marlene Bartos, 2024. "A persistent prefrontal reference frame across time and task rules," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    11. McDowell, Shaun, 2018. "An empirical evaluation of estimation error reduction strategies applied to international diversification," Journal of Multinational Financial Management, Elsevier, vol. 44(C), pages 1-13.
    12. Olivier Ledoit & Michael Wolf, 2003. "Honey, I shrunk the sample covariance matrix," Economics Working Papers 691, Department of Economics and Business, Universitat Pompeu Fabra.
    13. Konno, Yoshihiko, 2009. "Shrinkage estimators for large covariance matrices in multivariate real and complex normal distributions under an invariant quadratic loss," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2237-2253, November.
    14. Evan S. Schaffer & Neeli Mishra & Matthew R. Whiteway & Wenze Li & Michelle B. Vancura & Jason Freedman & Kripa B. Patel & Venkatakaushik Voleti & Liam Paninski & Elizabeth M. C. Hillman & L. F. Abbot, 2023. "The spatial and temporal structure of neural activity across the fly brain," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    15. Micha Heilbron & Florent Meyniel, 2019. "Confidence resets reveal hierarchical adaptive learning in humans," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-24, April.
    16. Yuan, Ke-Hai & Chan, Wai, 2008. "Structural equation modeling with near singular covariance matrices," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4842-4858, June.
    17. Jian Zhang & Li Su, 2015. "Temporal Autocorrelation-Based Beamforming With MEG Neuroimaging Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1375-1388, December.
    18. Huee Ru Chong & Yadollah Ranjbar-Slamloo & Malcolm Zheng Hao Ho & Xuan Ouyang & Tsukasa Kamigaki, 2023. "Functional alterations of the prefrontal circuit underlying cognitive aging in mice," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    19. Satoko Amemori & Ann M. Graybiel & Ken-ichi Amemori, 2024. "Cingulate microstimulation induces negative decision-making via reduced top-down influence on primate fronto-cingulo-striatal network," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    20. MohammadAmin Fazli & Parsa Alian & Ali Owfi & Erfan Loghmani, 2021. "RPS: Portfolio Asset Selection using Graph based Representation Learning," Papers 2111.15634, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54032-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.