IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1008011.html
   My bibliography  Save this article

Information transmission from NFkB signaling dynamics to gene expression

Author

Listed:
  • Alok Maity
  • Roy Wollman

Abstract

The dynamic signal encoding paradigm suggests that information flows from the extracellular environment into specific signaling patterns (encoding) that are then read by downstream effectors to control cellular behavior. Previous work empirically quantified the information content of dynamic signaling patterns. However, whether this information can be faithfully transmitted to the gene expression level is unclear. Here we used NFkB signaling as a model to understand the accuracy of information transmission from signaling dynamics into gene expression. Using a detailed mathematical model, we simulated realistic NFkB signaling patterns with different degrees of variability. The NFkB patterns were used as an input to a simple gene expression model. Analysis of information transmission between ligand and NFkB and ligand and gene expression allows us to determine information loss in transmission between receptors to dynamic signaling patterns and between signaling dynamics to gene expression. Information loss could occur due to biochemical noise or due to a lack of specificity. We found that noise-free gene expression has very little information loss suggesting that gene expression can preserve specificity in NFkB patterns. As expected, the addition of noise to the gene expression model results in information loss. Interestingly, this effect can be mitigated by a specific choice of parameters that can substantially reduce information loss due to biochemical noise during gene expression. Overall our results show that the cellular capacity for information transmission from dynamic signaling patterns to gene expression can be high enough to preserve ligand specificity and thereby the accuracy of cellular response to environmental cues.Author summary: The fidelity of signal transduction depends on the accurate encoding of ligand information in specific signaling patterns and the reliable transmission of these patterns by downstream gene expression machinery. We present an analysis of the accuracy of information transmission from signaling dynamics into gene expression in the case of the transcription factor NFkB. We show that noiseless gene expression can preserve ligand identity with minimal information loss. The addition of noise to gene expression model results in information loss, an effect that can be largely mitigated by choice of parameter values.

Suggested Citation

  • Alok Maity & Roy Wollman, 2020. "Information transmission from NFkB signaling dynamics to gene expression," PLOS Computational Biology, Public Library of Science, vol. 16(8), pages 1-16, August.
  • Handle: RePEc:plo:pcbi00:1008011
    DOI: 10.1371/journal.pcbi.1008011
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008011
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1008011&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1008011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Clive G Bowsher & Margaritis Voliotis & Peter S Swain, 2013. "The Fidelity of Dynamic Signaling by Noisy Biomolecular Networks," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-9, March.
    2. Gašper Tkačik & Olivier Marre & Dario Amodei & Elad Schneidman & William Bialek & Michael J Berry II, 2014. "Searching for Collective Behavior in a Large Network of Sensory Neurons," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-23, January.
    3. Alex Sigal & Ron Milo & Ariel Cohen & Naama Geva-Zatorsky & Yael Klein & Yuvalal Liron & Nitzan Rosenfeld & Tamar Danon & Natalie Perzov & Uri Alon, 2006. "Variability and memory of protein levels in human cells," Nature, Nature, vol. 444(7119), pages 643-646, November.
    4. Iman Habibi & Raymond Cheong & Tomasz Lipniacki & Andre Levchenko & Effat S Emamian & Ali Abdi, 2017. "Computation and measurement of cell decision making errors using single cell data," PLOS Computational Biology, Public Library of Science, vol. 13(4), pages 1-17, April.
    5. Ricardo E. Dolmetsch & Keli Xu & Richard S. Lewis, 1998. "Calcium oscillations increase the efficiency and specificity of gene expression," Nature, Nature, vol. 392(6679), pages 933-936, April.
    6. Einat Granot-Atedgi & Gašper Tkačik & Ronen Segev & Elad Schneidman, 2013. "Stimulus-dependent Maximum Entropy Models of Neural Population Codes," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-14, March.
    7. Michael A. Rowland & Joseph M. Greenbaum & Eric J. Deeds, 2017. "Crosstalk and the evolvability of intracellular communication," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
    8. Michael Chevalier & Ophelia Venturelli & Hana El-Samad, 2015. "The Impact of Different Sources of Fluctuations on Mutual Information in Biochemical Networks," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-21, October.
    9. Gabriele Micali & Gerardo Aquino & David M Richards & Robert G Endres, 2015. "Accurate Encoding and Decoding by Single Cells: Amplitude Versus Frequency Modulation," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-21, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jason S Prentice & Olivier Marre & Mark L Ioffe & Adrianna R Loback & Gašper Tkačik & Michael J Berry II, 2016. "Error-Robust Modes of the Retinal Population Code," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-32, November.
    2. Urs Köster & Jascha Sohl-Dickstein & Charles M Gray & Bruno A Olshausen, 2014. "Modeling Higher-Order Correlations within Cortical Microcolumns," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-12, July.
    3. Christian Donner & Klaus Obermayer & Hideaki Shimazaki, 2017. "Approximate Inference for Time-Varying Interactions and Macroscopic Dynamics of Neural Populations," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-27, January.
    4. Kazunari Iwamoto & Yuki Shindo & Koichi Takahashi, 2016. "Modeling Cellular Noise Underlying Heterogeneous Cell Responses in the Epidermal Growth Factor Signaling Pathway," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-18, November.
    5. Yu, Guang & Yi, Ming & Jia, Ya & Tang, Jun, 2009. "A constructive role of internal noise on coherence resonance induced by external noise in a calcium oscillation system," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 273-283.
    6. UnJin Lee & John J Skinner & John Reinitz & Marsha Rich Rosner & Eun-Jin Kim, 2015. "Noise-Driven Phenotypic Heterogeneity with Finite Correlation Time in Clonal Populations," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-17, July.
    7. David A Sivak & Matt Thomson, 2014. "Environmental Statistics and Optimal Regulation," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-12, September.
    8. Ming Ni & Antoine L Decrulle & Fanette Fontaine & Alice Demarez & Francois Taddei & Ariel B Lindner, 2012. "Pre-Disposition and Epigenetics Govern Variation in Bacterial Survival upon Stress," PLOS Genetics, Public Library of Science, vol. 8(12), pages 1-11, December.
    9. Pau Farré & Eldon Emberly, 2018. "A maximum-entropy model for predicting chromatin contacts," PLOS Computational Biology, Public Library of Science, vol. 14(2), pages 1-16, February.
    10. Monica T. Dayao & Maigan Brusko & Clive Wasserfall & Ziv Bar-Joseph, 2022. "Membrane marker selection for segmenting single cell spatial proteomics data," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Jan Humplik & Gašper Tkačik, 2017. "Probabilistic models for neural populations that naturally capture global coupling and criticality," PLOS Computational Biology, Public Library of Science, vol. 13(9), pages 1-26, September.
    12. Nick E Phillips & Cerys Manning & Nancy Papalopulu & Magnus Rattray, 2017. "Identifying stochastic oscillations in single-cell live imaging time series using Gaussian processes," PLOS Computational Biology, Public Library of Science, vol. 13(5), pages 1-30, May.
    13. Liang Qiao & Robert B Nachbar & Ioannis G Kevrekidis & Stanislav Y Shvartsman, 2007. "Bistability and Oscillations in the Huang-Ferrell Model of MAPK Signaling," PLOS Computational Biology, Public Library of Science, vol. 3(9), pages 1-8, September.
    14. Yelyzaveta Shlyakhtina & Bianca Bloechl & Maximiliano M. Portal, 2023. "BdLT-Seq as a barcode decay-based method to unravel lineage-linked transcriptome plasticity," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    15. Anissa Guillemin & Ronan Duchesne & Fabien Crauste & Sandrine Gonin-Giraud & Olivier Gandrillon, 2019. "Drugs modulating stochastic gene expression affect the erythroid differentiation process," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-19, November.
    16. Margaritis Voliotis & Philipp Thomas & Ramon Grima & Clive G Bowsher, 2016. "Stochastic Simulation of Biomolecular Networks in Dynamic Environments," PLOS Computational Biology, Public Library of Science, vol. 12(6), pages 1-18, June.
    17. Gabriele Micali & Gerardo Aquino & David M Richards & Robert G Endres, 2015. "Accurate Encoding and Decoding by Single Cells: Amplitude Versus Frequency Modulation," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-21, June.
    18. Rok Grah & Tamar Friedlander, 2020. "The relation between crosstalk and gene regulation form revisited," PLOS Computational Biology, Public Library of Science, vol. 16(2), pages 1-24, February.
    19. Steven A Frank, 2013. "Evolution of Robustness and Cellular Stochasticity of Gene Expression," PLOS Biology, Public Library of Science, vol. 11(6), pages 1-3, June.
    20. Porta Mana, PierGianLuca & Rostami, Vahid & Torre, Emiliano & Roudi, Yasser, 2018. "Maximum-entropy and representative samples of neuronal activity: a dilemma," OSF Preprints uz29n, Center for Open Science.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.