IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004222.html
   My bibliography  Save this article

Accurate Encoding and Decoding by Single Cells: Amplitude Versus Frequency Modulation

Author

Listed:
  • Gabriele Micali
  • Gerardo Aquino
  • David M Richards
  • Robert G Endres

Abstract

Cells sense external concentrations and, via biochemical signaling, respond by regulating the expression of target proteins. Both in signaling networks and gene regulation there are two main mechanisms by which the concentration can be encoded internally: amplitude modulation (AM), where the absolute concentration of an internal signaling molecule encodes the stimulus, and frequency modulation (FM), where the period between successive bursts represents the stimulus. Although both mechanisms have been observed in biological systems, the question of when it is beneficial for cells to use either AM or FM is largely unanswered. Here, we first consider a simple model for a single receptor (or ion channel), which can either signal continuously whenever a ligand is bound, or produce a burst in signaling molecule upon receptor binding. We find that bursty signaling is more accurate than continuous signaling only for sufficiently fast dynamics. This suggests that modulation based on bursts may be more common in signaling networks than in gene regulation. We then extend our model to multiple receptors, where continuous and bursty signaling are equivalent to AM and FM respectively, finding that AM is always more accurate. This implies that the reason some cells use FM is related to factors other than accuracy, such as the ability to coordinate expression of multiple genes or to implement threshold crossing mechanisms.Author Summary: Signals, and hence information, can generally be transmitted either by amplitude (AM) or frequency (FM) modulation, as used, for example, in the transmission of radio waves since the 1930s. Both types of modulation are known to play a role in biology with AM conventionally associated with signaling and gene expression, and FM used to reliably transmit electrical signals over large distances between neurons. Surprisingly, FM was recently also observed in gene regulation, making their roles less distinct than previously thought. Although the engineering advantages and disadvantages of AM and FM are well understood, the equivalent question in biological systems is still largely unsolved. Here, we propose a simple model of signaling by receptors (or ion channels) with subsequent gene regulation, thus implementing both AM and FM in different types of biological pathways. We then compare the accuracy in the production of target proteins. We find that FM can be more accurate than AM only for a single receptor with fast signaling, whereas AM is more accurate in slow gene regulation and with signaling by multiple receptors. Finally, we propose possible reasons that cells use FM despite the potential decrease in accuracy.

Suggested Citation

  • Gabriele Micali & Gerardo Aquino & David M Richards & Robert G Endres, 2015. "Accurate Encoding and Decoding by Single Cells: Amplitude Versus Frequency Modulation," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-21, June.
  • Handle: RePEc:plo:pcbi00:1004222
    DOI: 10.1371/journal.pcbi.1004222
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004222
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004222&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004222?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joseph R. Arron & Monte M. Winslow & Alberto Polleri & Ching-Pin Chang & Hai Wu & Xin Gao & Joel R. Neilson & Lei Chen & Jeremy J. Heit & Seung K. Kim & Nobuyuki Yamasaki & Tsuyoshi Miyakawa & Uta Fra, 2006. "NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21," Nature, Nature, vol. 441(7093), pages 595-600, June.
    2. Long Cai & Chiraj K. Dalal & Michael B. Elowitz, 2008. "Frequency-modulated nuclear localization bursts coordinate gene regulation," Nature, Nature, vol. 455(7212), pages 485-490, September.
    3. Richard C. Yu & C. Gustavo Pesce & Alejandro Colman-Lerner & Larry Lok & David Pincus & Eduard Serra & Mark Holl & Kirsten Benjamin & Andrew Gordon & Roger Brent, 2008. "Negative feedback that improves information transmission in yeast signalling," Nature, Nature, vol. 456(7223), pages 755-761, December.
    4. Jing Kang & Bing Xu & Ye Yao & Wei Lin & Conor Hennessy & Peter Fraser & Jianfeng Feng, 2011. "A Dynamical Model Reveals Gene Co-Localizations in Nucleus," PLOS Computational Biology, Public Library of Science, vol. 7(7), pages 1-16, July.
    5. N. Barkai & S. Leibler, 1997. "Robustness in simple biochemical networks," Nature, Nature, vol. 387(6636), pages 913-917, June.
    6. Avigdor Eldar & Michael B. Elowitz, 2010. "Functional roles for noise in genetic circuits," Nature, Nature, vol. 467(7312), pages 167-173, September.
    7. U. Alon & M. G. Surette & N. Barkai & S. Leibler, 1999. "Robustness in bacterial chemotaxis," Nature, Nature, vol. 397(6715), pages 168-171, January.
    8. Ricardo E. Dolmetsch & Keli Xu & Richard S. Lewis, 1998. "Calcium oscillations increase the efficiency and specificity of gene expression," Nature, Nature, vol. 392(6679), pages 933-936, April.
    9. Michael J. Berridge, 1997. "The AM and FM of calcium signalling," Nature, Nature, vol. 386(6627), pages 759-760, April.
    10. Savaş Tay & Jacob J. Hughey & Timothy K. Lee & Tomasz Lipniacki & Stephen R. Quake & Markus W. Covert, 2010. "Single-cell NF-κB dynamics reveal digital activation and analogue information processing," Nature, Nature, vol. 466(7303), pages 267-271, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alok Maity & Roy Wollman, 2020. "Information transmission from NFkB signaling dynamics to gene expression," PLOS Computational Biology, Public Library of Science, vol. 16(8), pages 1-16, August.
    2. Nick E Phillips & Cerys Manning & Nancy Papalopulu & Magnus Rattray, 2017. "Identifying stochastic oscillations in single-cell live imaging time series using Gaussian processes," PLOS Computational Biology, Public Library of Science, vol. 13(5), pages 1-30, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agne Tilūnaitė & Wayne Croft & Noah Russell & Tomas C Bellamy & Rüdiger Thul, 2017. "A Bayesian approach to modelling heterogeneous calcium responses in cell populations," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-25, October.
    2. Jae Kyoung Kim & Trachette L Jackson, 2013. "Mechanisms That Enhance Sustainability of p53 Pulses," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-11, June.
    3. Junjie Luo & Jun Wang & Ting Martin Ma & Zhirong Sun, 2010. "Reverse Engineering of Bacterial Chemotaxis Pathway via Frequency Domain Analysis," PLOS ONE, Public Library of Science, vol. 5(3), pages 1-8, March.
    4. Jinlong Yuan & Lei Wang & Xu Zhang & Enmin Feng & Hongchao Yin & Zhilong Xiu, 2015. "Parameter identification for a nonlinear enzyme-catalytic dynamic system with time-delays," Journal of Global Optimization, Springer, vol. 62(4), pages 791-810, August.
    5. Miri Adler & Avi Mayo & Uri Alon, 2014. "Logarithmic and Power Law Input-Output Relations in Sensory Systems with Fold-Change Detection," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-14, August.
    6. Kirstin Meyer & Nicholas C. Lammers & Lukasz J. Bugaj & Hernan G. Garcia & Orion D. Weiner, 2023. "Optogenetic control of YAP reveals a dynamic communication code for stem cell fate and proliferation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Martiny, Emil S. & Jensen, Mogens H. & Heltberg, Mathias S., 2022. "Detecting limit cycles in stochastic time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    8. Ziya Kalay & Takahiro K Fujiwara & Akihiro Kusumi, 2012. "Confining Domains Lead to Reaction Bursts: Reaction Kinetics in the Plasma Membrane," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-8, March.
    9. Vera Bettenworth & Simon Vliet & Bartosz Turkowyd & Annika Bamberger & Heiko Wendt & Matthew McIntosh & Wieland Steinchen & Ulrike Endesfelder & Anke Becker, 2022. "Frequency modulation of a bacterial quorum sensing response," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Zeina Shreif & Vipul Periwal, 2014. "A Network Characteristic That Correlates Environmental and Genetic Robustness," PLOS Computational Biology, Public Library of Science, vol. 10(2), pages 1-23, February.
    11. Diana Clausznitzer & Olga Oleksiuk & Linda Løvdok & Victor Sourjik & Robert G Endres, 2010. "Chemotactic Response and Adaptation Dynamics in Escherichia coli," PLOS Computational Biology, Public Library of Science, vol. 6(5), pages 1-11, May.
    12. Guillermo Rodrigo & Santiago F Elena, 2011. "Structural Discrimination of Robustness in Transcriptional Feedforward Loops for Pattern Formation," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-7, February.
    13. Giorgos Minas & Dan J Woodcock & Louise Ashall & Claire V Harper & Michael R H White & David A Rand, 2020. "Multiplexing information flow through dynamic signalling systems," PLOS Computational Biology, Public Library of Science, vol. 16(8), pages 1-18, August.
    14. Burton W Andrews & Tau-Mu Yi & Pablo A Iglesias, 2006. "Optimal Noise Filtering in the Chemotactic Response of Escherichia coli," PLOS Computational Biology, Public Library of Science, vol. 2(11), pages 1-12, November.
    15. Diana Clausznitzer & Gabriele Micali & Silke Neumann & Victor Sourjik & Robert G Endres, 2014. "Predicting Chemical Environments of Bacteria from Receptor Signaling," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-14, October.
    16. Robert M Cooper & Ned S Wingreen & Edward C Cox, 2012. "An Excitable Cortex and Memory Model Successfully Predicts New Pseudopod Dynamics," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-12, March.
    17. Marc Weber & Javier Buceta, 2013. "Stochastic Stabilization of Phenotypic States: The Genetic Bistable Switch as a Case Study," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-8, September.
    18. Robyn P. Araujo & Lance A. Liotta, 2023. "Universal structures for adaptation in biochemical reaction networks," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    19. Mohammad Soltani & Cesar A Vargas-Garcia & Duarte Antunes & Abhyudai Singh, 2016. "Intercellular Variability in Protein Levels from Stochastic Expression and Noisy Cell Cycle Processes," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-23, August.
    20. Kazunari Iwamoto & Yuki Shindo & Koichi Takahashi, 2016. "Modeling Cellular Noise Underlying Heterogeneous Cell Responses in the Epidermal Growth Factor Signaling Pathway," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-18, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.