IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0225166.html
   My bibliography  Save this article

Drugs modulating stochastic gene expression affect the erythroid differentiation process

Author

Listed:
  • Anissa Guillemin
  • Ronan Duchesne
  • Fabien Crauste
  • Sandrine Gonin-Giraud
  • Olivier Gandrillon

Abstract

To better understand the mechanisms behind cells decision-making to differentiate, we assessed the influence of stochastic gene expression (SGE) modulation on the erythroid differentiation process. It has been suggested that stochastic gene expression has a role in cell fate decision-making which is revealed by single-cell analyses but studies dedicated to demonstrate the consistency of this link are still lacking. Recent observations showed that SGE significantly increased during differentiation and a few showed that an increase of the level of SGE is accompanied by an increase in the differentiation process. However, a consistent relation in both increasing and decreasing directions has never been shown in the same cellular system. Such demonstration would require to be able to experimentally manipulate simultaneously the level of SGE and cell differentiation in order to observe if cell behavior matches with the current theory. We identified three drugs that modulate SGE in primary erythroid progenitor cells. Both Artemisinin and Indomethacin decreased SGE and reduced the amount of differentiated cells. On the contrary, a third component called MB-3 simultaneously increased the level of SGE and the amount of differentiated cells. We then used a dynamical modelling approach which confirmed that differentiation rates were indeed affected by the drug treatment. Using single-cell analysis and modeling tools, we provide experimental evidence that, in a physiologically relevant cellular system, SGE is linked to differentiation.

Suggested Citation

  • Anissa Guillemin & Ronan Duchesne & Fabien Crauste & Sandrine Gonin-Giraud & Olivier Gandrillon, 2019. "Drugs modulating stochastic gene expression affect the erythroid differentiation process," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-19, November.
  • Handle: RePEc:plo:pone00:0225166
    DOI: 10.1371/journal.pone.0225166
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0225166
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0225166&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0225166?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alex Sigal & Ron Milo & Ariel Cohen & Naama Geva-Zatorsky & Yael Klein & Yuvalal Liron & Nitzan Rosenfeld & Tamar Danon & Natalie Perzov & Uri Alon, 2006. "Variability and memory of protein levels in human cells," Nature, Nature, vol. 444(7119), pages 643-646, November.
    2. Arjun Raj & Charles S Peskin & Daniel Tranchina & Diana Y Vargas & Sanjay Tyagi, 2006. "Stochastic mRNA Synthesis in Mammalian Cells," PLOS Biology, Public Library of Science, vol. 4(10), pages 1-13, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stuart Aitken & Marie-Cécile Robert & Ross D Alexander & Igor Goryanin & Edouard Bertrand & Jean D Beggs, 2010. "Processivity and Coupling in Messenger RNA Transcription," PLOS ONE, Public Library of Science, vol. 5(1), pages 1-12, January.
    2. Singh, Abhyudai & Vahdat, Zahra & Xu, Zikai, 2019. "Time-triggered stochastic hybrid systems with two timer-dependent resets," OSF Preprints u8fzg, Center for Open Science.
    3. Muir Morrison & Manuel Razo-Mejia & Rob Phillips, 2021. "Reconciling kinetic and thermodynamic models of bacterial transcription," PLOS Computational Biology, Public Library of Science, vol. 17(1), pages 1-30, January.
    4. Monica T. Dayao & Maigan Brusko & Clive Wasserfall & Ziv Bar-Joseph, 2022. "Membrane marker selection for segmenting single cell spatial proteomics data," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Marc S Sherman & Barak A Cohen, 2014. "A Computational Framework for Analyzing Stochasticity in Gene Expression," PLOS Computational Biology, Public Library of Science, vol. 10(5), pages 1-13, May.
    6. Rajesh Ramaswamy & Ivo F Sbalzarini & Nélido González-Segredo, 2011. "Noise-Induced Modulation of the Relaxation Kinetics around a Non-Equilibrium Steady State of Non-Linear Chemical Reaction Networks," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-10, January.
    7. Anton J M Larsson & Christoph Ziegenhain & Michael Hagemann-Jensen & Björn Reinius & Tina Jacob & Tim Dalessandri & Gert-Jan Hendriks & Maria Kasper & Rickard Sandberg, 2021. "Transcriptional bursts explain autosomal random monoallelic expression and affect allelic imbalance," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-16, March.
    8. Chen, Aimin & Tian, Tianhai & Chen, Yiren & Zhou, Tianshou, 2022. "Stochastic analysis of a complex gene-expression model," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    9. Zachary R Fox & Brian Munsky, 2019. "The finite state projection based Fisher information matrix approach to estimate information and optimize single-cell experiments," PLOS Computational Biology, Public Library of Science, vol. 15(1), pages 1-23, January.
    10. Abhyudai Singh & Mohammad Soltani, 2013. "Quantifying Intrinsic and Extrinsic Variability in Stochastic Gene Expression Models," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-12, December.
    11. Jonathan Liu & Donald Hansen & Elizabeth Eck & Yang Joon Kim & Meghan Turner & Simon Alamos & Hernan Garcia, 2021. "Real-time single-cell characterization of the eukaryotic transcription cycle reveals correlations between RNA initiation, elongation, and cleavage," PLOS Computational Biology, Public Library of Science, vol. 17(5), pages 1-26, May.
    12. Alok Maity & Roy Wollman, 2020. "Information transmission from NFkB signaling dynamics to gene expression," PLOS Computational Biology, Public Library of Science, vol. 16(8), pages 1-16, August.
    13. Pranidhi Sood & Robert J Johnston Jr. & Edo Kussell, 2012. "Stochastic De-repression of Rhodopsins in Single Photoreceptors of the Fly Retina," PLOS Computational Biology, Public Library of Science, vol. 8(2), pages 1-13, February.
    14. William C. W. Chen & Leonid Gaidukov & Yong Lai & Ming-Ru Wu & Jicong Cao & Michael J. Gutbrod & Gigi C. G. Choi & Rachel P. Utomo & Ying-Chou Chen & Liliana Wroblewska & Manolis Kellis & Lin Zhang & , 2022. "A synthetic transcription platform for programmable gene expression in mammalian cells," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    15. Matthew Antel & Romir Raj & Madona Y. G. Masoud & Ziwei Pan & Sheng Li & Barbara G. Mellone & Mayu Inaba, 2022. "Interchromosomal interaction of homologous Stat92E alleles regulates transcriptional switch during stem-cell differentiation," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    16. Hui Zhang & Yueling Chen & Yong Chen, 2012. "Noise Propagation in Gene Regulation Networks Involving Interlinked Positive and Negative Feedback Loops," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-8, December.
    17. Mohammad Soltani & Cesar A Vargas-Garcia & Duarte Antunes & Abhyudai Singh, 2016. "Intercellular Variability in Protein Levels from Stochastic Expression and Noisy Cell Cycle Processes," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-23, August.
    18. Kazunari Iwamoto & Yuki Shindo & Koichi Takahashi, 2016. "Modeling Cellular Noise Underlying Heterogeneous Cell Responses in the Epidermal Growth Factor Signaling Pathway," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-18, November.
    19. Amy L. Hughes & Aleksander T. Szczurek & Jessica R. Kelley & Anna Lastuvkova & Anne H. Turberfield & Emilia Dimitrova & Neil P. Blackledge & Robert J. Klose, 2023. "A CpG island-encoded mechanism protects genes from premature transcription termination," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    20. Alistair N Boettiger & Peter L Ralph & Steven N Evans, 2011. "Transcriptional Regulation: Effects of Promoter Proximal Pausing on Speed, Synchrony and Reliability," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-14, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0225166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.