IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003826.html
   My bibliography  Save this article

Environmental Statistics and Optimal Regulation

Author

Listed:
  • David A Sivak
  • Matt Thomson

Abstract

Any organism is embedded in an environment that changes over time. The timescale for and statistics of environmental change, the precision with which the organism can detect its environment, and the costs and benefits of particular protein expression levels all will affect the suitability of different strategies–such as constitutive expression or graded response–for regulating protein levels in response to environmental inputs. We propose a general framework–here specifically applied to the enzymatic regulation of metabolism in response to changing concentrations of a basic nutrient–to predict the optimal regulatory strategy given the statistics of fluctuations in the environment and measurement apparatus, respectively, and the costs associated with enzyme production. We use this framework to address three fundamental questions: (i) when a cell should prefer thresholding to a graded response; (ii) when there is a fitness advantage to implementing a Bayesian decision rule; and (iii) when retaining memory of the past provides a selective advantage. We specifically find that: (i) relative convexity of enzyme expression cost and benefit influences the fitness of thresholding or graded responses; (ii) intermediate levels of measurement uncertainty call for a sophisticated Bayesian decision rule; and (iii) in dynamic contexts, intermediate levels of uncertainty call for retaining memory of the past. Statistical properties of the environment, such as variability and correlation times, set optimal biochemical parameters, such as thresholds and decay rates in signaling pathways. Our framework provides a theoretical basis for interpreting molecular signal processing algorithms and a classification scheme that organizes known regulatory strategies and may help conceptualize heretofore unknown ones.Author Summary: All organisms live in environments that dynamically change in ways that are only partially predictable. The seasons, diurnal cycles, oceanic fluid dynamics, and the progression of food through the human gut, all impose some predictability on common microbial ecosystems. Microbes are also at the whim of random processes (like thermal motion) that introduce uncertainty into environmental change. Here, we develop a theoretical framework to analyze how cellular regulatory systems might balance this predictability and uncertainty to most effectively respond to a dynamic environment. We model a simple cellular goal: regulating a single enzyme to maximize the energy generated from a nutrient whose environmental concentration varies. In this context, optimal regulatory strategies are determined by an uncertainty ratio comparing cellular measurement noise and environmental variability. Intermediate levels of uncertainty call for sophisticated Bayesian decision rules, where selective advantage accrues to organisms that incorporate past experience in their inference of the current environmental state. When uncertainty is either high or low, optimal signal processing strategies are comparatively simple: constitutive expression or naive tracking, respectively. This work provides a theoretical basis for interpreting molecular signal processing algorithms and suggests that relative levels of environmental variability and cellular noise affect how microbes should process information.

Suggested Citation

  • David A Sivak & Matt Thomson, 2014. "Environmental Statistics and Optimal Regulation," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-12, September.
  • Handle: RePEc:plo:pcbi00:1003826
    DOI: 10.1371/journal.pcbi.1003826
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003826
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003826&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003826?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Paul Nurse, 2008. "Life, logic and information," Nature, Nature, vol. 454(7203), pages 424-426, July.
    2. Alex Sigal & Ron Milo & Ariel Cohen & Naama Geva-Zatorsky & Yael Klein & Yuvalal Liron & Nitzan Rosenfeld & Tamar Danon & Natalie Perzov & Uri Alon, 2006. "Variability and memory of protein levels in human cells," Nature, Nature, vol. 444(7119), pages 643-646, November.
    3. Amir Mitchell & Gal H. Romano & Bella Groisman & Avihu Yona & Erez Dekel & Martin Kupiec & Orna Dahan & Yitzhak Pilpel, 2009. "Adaptive prediction of environmental changes by microorganisms," Nature, Nature, vol. 460(7252), pages 220-224, July.
    4. N. Barkai & S. Leibler, 1997. "Robustness in simple biochemical networks," Nature, Nature, vol. 387(6636), pages 913-917, June.
    5. Erez Dekel & Uri Alon, 2005. "Optimality and evolutionary tuning of the expression level of a protein," Nature, Nature, vol. 436(7050), pages 588-592, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert Planqué & Josephus Hulshof & Bas Teusink & Johannes C Hendriks & Frank J Bruggeman, 2018. "Maintaining maximal metabolic flux by gene expression control," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-20, September.
    2. Zihan Wang & Akshit Goyal & Veronika Dubinkina & Ashish B. George & Tong Wang & Yulia Fridman & Sergei Maslov, 2021. "Complementary resource preferences spontaneously emerge in diauxic microbial communities," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Jae Kyoung Kim & Trachette L Jackson, 2013. "Mechanisms That Enhance Sustainability of p53 Pulses," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-11, June.
    4. Monica T. Dayao & Maigan Brusko & Clive Wasserfall & Ziv Bar-Joseph, 2022. "Membrane marker selection for segmenting single cell spatial proteomics data," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Sébastien Boyer & Lucas Hérissant & Gavin Sherlock, 2021. "Adaptation is influenced by the complexity of environmental change during evolution in a dynamic environment," PLOS Genetics, Public Library of Science, vol. 17(1), pages 1-27, January.
    6. Diana Clausznitzer & Olga Oleksiuk & Linda Løvdok & Victor Sourjik & Robert G Endres, 2010. "Chemotactic Response and Adaptation Dynamics in Escherichia coli," PLOS Computational Biology, Public Library of Science, vol. 6(5), pages 1-11, May.
    7. Alok Maity & Roy Wollman, 2020. "Information transmission from NFkB signaling dynamics to gene expression," PLOS Computational Biology, Public Library of Science, vol. 16(8), pages 1-16, August.
    8. Enrico Borriello & Sara Imari Walker, 2017. "An Information-Based Classification of Elementary Cellular Automata," Complexity, Hindawi, vol. 2017, pages 1-8, September.
    9. Alexander Tschantz & Anil K Seth & Christopher L Buckley, 2020. "Learning action-oriented models through active inference," PLOS Computational Biology, Public Library of Science, vol. 16(4), pages 1-30, April.
    10. Thuy N. Nguyen & Christine Ingle & Samuel Thompson & Kimberly A. Reynolds, 2024. "The genetic landscape of a metabolic interaction," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    11. Jiang, Xiong-Fei & Xiong, Long & Bai, Ling & Lin, Jie & Zhang, Jing-Feng & Yan, Kun & Zhu, Jia-Zhen & Zheng, Bo & Zheng, Jian-Jun, 2022. "Structure and dynamics of human complication-disease network," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    12. Guillermo Rodrigo & Santiago F Elena, 2011. "Structural Discrimination of Robustness in Transcriptional Feedforward Loops for Pattern Formation," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-7, February.
    13. Dong, Gaogao & Tian, Lixin & Du, Ruijin & Fu, Min & Stanley, H. Eugene, 2014. "Analysis of percolation behaviors of clustered networks with partial support–dependence relations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 370-378.
    14. Liang-Yu Nieh & Frederic Y.-H. Chen & Hsin-Wei Jung & Kuan-Yu Su & Chao-Yin Tsuei & Chun-Ting Lin & Yue-Qi Lee & James C. Liao, 2024. "Evolutionary engineering of methylotrophic E. coli enables fast growth on methanol," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    15. William R Harcombe & Nigel F Delaney & Nicholas Leiby & Niels Klitgord & Christopher J Marx, 2013. "The Ability of Flux Balance Analysis to Predict Evolution of Central Metabolism Scales with the Initial Distance to the Optimum," PLOS Computational Biology, Public Library of Science, vol. 9(6), pages 1-11, June.
    16. Hui Zhang & Yueling Chen & Yong Chen, 2012. "Noise Propagation in Gene Regulation Networks Involving Interlinked Positive and Negative Feedback Loops," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-8, December.
    17. Niklas Korsbo & Henrik Jönsson, 2020. "It’s about time: Analysing simplifying assumptions for modelling multi-step pathways in systems biology," PLOS Computational Biology, Public Library of Science, vol. 16(6), pages 1-29, June.
    18. Robert M Cooper & Ned S Wingreen & Edward C Cox, 2012. "An Excitable Cortex and Memory Model Successfully Predicts New Pseudopod Dynamics," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-12, March.
    19. Jonathan R Karr & Alex H Williams & Jeremy D Zucker & Andreas Raue & Bernhard Steiert & Jens Timmer & Clemens Kreutz & DREAM8 Parameter Estimation Challenge Consortium & Simon Wilkinson & Brandon A Al, 2015. "Summary of the DREAM8 Parameter Estimation Challenge: Toward Parameter Identification for Whole-Cell Models," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-21, May.
    20. Kazunari Iwamoto & Yuki Shindo & Koichi Takahashi, 2016. "Modeling Cellular Noise Underlying Heterogeneous Cell Responses in the Epidermal Growth Factor Signaling Pathway," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-18, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.