IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006283.html
   My bibliography  Save this article

Unsupervised clustering of temporal patterns in high-dimensional neuronal ensembles using a novel dissimilarity measure

Author

Listed:
  • Lukas Grossberger
  • Francesco P Battaglia
  • Martin Vinck

Abstract

Temporally ordered multi-neuron patterns likely encode information in the brain. We introduce an unsupervised method, SPOTDisClust (Spike Pattern Optimal Transport Dissimilarity Clustering), for their detection from high-dimensional neural ensembles. SPOTDisClust measures similarity between two ensemble spike patterns by determining the minimum transport cost of transforming their corresponding normalized cross-correlation matrices into each other (SPOTDis). Then, it performs density-based clustering based on the resulting inter-pattern dissimilarity matrix. SPOTDisClust does not require binning and can detect complex patterns (beyond sequential activation) even when high levels of out-of-pattern “noise” spiking are present. Our method handles efficiently the additional information from increasingly large neuronal ensembles and can detect a number of patterns that far exceeds the number of recorded neurons. In an application to neural ensemble data from macaque monkey V1 cortex, SPOTDisClust can identify different moving stimulus directions on the sole basis of temporal spiking patterns.Author summary: The brain encodes information by ensembles of neurons, and recent technological developments allow researchers to simultaneously record from over thousands of neurons. Neurons exhibit spontaneous activity patterns, which are constrained by experience and development, limiting the portion of state space that is effectively visited. Patterns of spontaneous activity may contribute to shaping the synaptic connectivity matrix and contribute to memory consolidation, and synaptic plasticity formation depends crucially on the temporal spiking order among neurons. Hence, the unsupervised detection of spike sequences is a sine qua non for understanding how spontaneous activity contributes to memory formation. Yet, sequence detection presents major methodological challenges like the sparsity and stochasticity of neuronal output, and its high dimensionality. We propose a dissimilarity measure between neuronal patterns based on optimal transport theory, determining their similarity from the pairwise cross-correlation matrix, which can be taken as a proxy of the “trace” that is left on the synaptic matrix. We then perform unsupervised clustering and visualization of patterns using density clustering on the dissimilarity matrix and low-dimensional embedding techniques. This method does not require binning of spike times, is robust to noise, jitter and rate fluctuations, and can detect more patterns than the number of neurons.

Suggested Citation

  • Lukas Grossberger & Francesco P Battaglia & Martin Vinck, 2018. "Unsupervised clustering of temporal patterns in high-dimensional neuronal ensembles using a novel dissimilarity measure," PLOS Computational Biology, Public Library of Science, vol. 14(7), pages 1-34, July.
  • Handle: RePEc:plo:pcbi00:1006283
    DOI: 10.1371/journal.pcbi.1006283
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006283
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006283&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006283?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. George Dragoi & Susumu Tonegawa, 2011. "Preplay of future place cell sequences by hippocampal cellular assemblies," Nature, Nature, vol. 469(7330), pages 397-401, January.
    2. Brad E. Pfeiffer & David J. Foster, 2013. "Hippocampal place-cell sequences depict future paths to remembered goals," Nature, Nature, vol. 497(7447), pages 74-79, May.
    3. Jeroen J. Bos & Martin Vinck & Laura A. van Mourik-Donga & Jadin C. Jackson & Menno P. Witter & Cyriel M. A. Pennartz, 2017. "Perirhinal firing patterns are sustained across large spatial segments of the task environment," Nature Communications, Nature, vol. 8(1), pages 1-12, August.
    4. Jonathan W Pillow & Jonathon Shlens & E J Chichilnisky & Eero P Simoncelli, 2013. "A Model-Based Spike Sorting Algorithm for Removing Correlation Artifacts in Multi-Neuron Recordings," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-14, May.
    5. David J. Foster & Matthew A. Wilson, 2006. "Reverse replay of behavioural sequences in hippocampal place cells during the awake state," Nature, Nature, vol. 440(7084), pages 680-683, March.
    6. Torkel Hafting & Marianne Fyhn & Sturla Molden & May-Britt Moser & Edvard I. Moser, 2005. "Microstructure of a spatial map in the entorhinal cortex," Nature, Nature, vol. 436(7052), pages 801-806, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giovanni Diana & Thomas T J Sainsbury & Martin P Meyer, 2019. "Bayesian inference of neuronal assemblies," PLOS Computational Biology, Public Library of Science, vol. 15(10), pages 1-31, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Will D Penny & Peter Zeidman & Neil Burgess, 2013. "Forward and Backward Inference in Spatial Cognition," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-22, December.
    2. J Matthew Mahoney & Ali S Titiz & Amanda E Hernan & Rod C Scott, 2016. "Short-Range Temporal Interactions in Sleep; Hippocampal Spike Avalanches Support a Large Milieu of Sequential Activity Including Replay," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-25, February.
    3. Marta Huelin Gorriz & Masahiro Takigawa & Daniel Bendor, 2023. "The role of experience in prioritizing hippocampal replay," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Nicolas Cazin & Martin Llofriu Alonso & Pablo Scleidorovich Chiodi & Tatiana Pelc & Bruce Harland & Alfredo Weitzenfeld & Jean-Marc Fellous & Peter Ford Dominey, 2019. "Reservoir computing model of prefrontal cortex creates novel combinations of previous navigation sequences from hippocampal place-cell replay with spatial reward propagation," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-32, July.
    5. Usman Farooq & George Dragoi, 2024. "Experience of Euclidean geometry sculpts the development and dynamics of rodent hippocampal sequential cell assemblies," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    6. Toon Van de Maele & Bart Dhoedt & Tim Verbelen & Giovanni Pezzulo, 2024. "A hierarchical active inference model of spatial alternation tasks and the hippocampal-prefrontal circuit," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Zhewei Zhang & Yuji K. Takahashi & Marlian Montesinos-Cartegena & Thorsten Kahnt & Angela J. Langdon & Geoffrey Schoenbaum, 2024. "Expectancy-related changes in firing of dopamine neurons depend on hippocampus," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Anli A. Liu & Simon Henin & Saman Abbaspoor & Anatol Bragin & Elizabeth A. Buffalo & Jordan S. Farrell & David J. Foster & Loren M. Frank & Tamara Gedankien & Jean Gotman & Jennifer A. Guidera & Kari , 2022. "A consensus statement on detection of hippocampal sharp wave ripples and differentiation from other fast oscillations," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Georgy Antonov & Christopher Gagne & Eran Eldar & Peter Dayan, 2022. "Optimism and pessimism in optimised replay," PLOS Computational Biology, Public Library of Science, vol. 18(1), pages 1-32, January.
    10. Hefei Guan & Steven J. Middleton & Takafumi Inoue & Thomas J. McHugh, 2021. "Lateralization of CA1 assemblies in the absence of CA3 input," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    11. Alexander Nitsch & Mona M. Garvert & Jacob L. S. Bellmund & Nicolas W. Schuck & Christian F. Doeller, 2024. "Grid-like entorhinal representation of an abstract value space during prospective decision making," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    12. Qi Huang & Zhibing Xiao & Qianqian Yu & Yuejia Luo & Jiahua Xu & Yukun Qu & Raymond Dolan & Timothy Behrens & Yunzhe Liu, 2024. "Replay-triggered brain-wide activation in humans," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    13. Alex P. Vaz & John H. Wittig & Sara K. Inati & Kareem A. Zaghloul, 2023. "Backbone spiking sequence as a basis for preplay, replay, and default states in human cortex," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Isabella C. Wagner & Luise P. Graichen & Boryana Todorova & Andre Lüttig & David B. Omer & Matthias Stangl & Claus Lamm, 2023. "Entorhinal grid-like codes and time-locked network dynamics track others navigating through space," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    15. Taylor J. Malone & Nai-Wen Tien & Yan Ma & Lian Cui & Shangru Lyu & Garret Wang & Duc Nguyen & Kai Zhang & Maxym V. Myroshnychenko & Jean Tyan & Joshua A. Gordon & David A. Kupferschmidt & Yi Gu, 2024. "A consistent map in the medial entorhinal cortex supports spatial memory," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    16. Kyerl Park & Yoonsoo Yeo & Kisung Shin & Jeehyun Kwag, 2024. "Egocentric neural representation of geometric vertex in the retrosplenial cortex," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Noga Mosheiff & Haggai Agmon & Avraham Moriel & Yoram Burak, 2017. "An efficient coding theory for a dynamic trajectory predicts non-uniform allocation of entorhinal grid cells to modules," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-19, June.
    18. Jun Liu & Arron F. Hall & Dong V. Wang, 2024. "Emerging many-to-one weighted mapping in hippocampus-amygdala network underlies memory formation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    19. Balázs Ujfalussy & Tamás Kiss & Péter Érdi, 2009. "Parallel Computational Subunits in Dentate Granule Cells Generate Multiple Place Fields," PLOS Computational Biology, Public Library of Science, vol. 5(9), pages 1-16, September.
    20. Louis-Emmanuel Martinet & Denis Sheynikhovich & Karim Benchenane & Angelo Arleo, 2011. "Spatial Learning and Action Planning in a Prefrontal Cortical Network Model," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-21, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.